|
--- |
|
license: mit |
|
--- |
|
|
|
# Model |
|
Multi-language sentiment classification model developed over the Microsoft [DeBERTa-v3 base model](https://huggingface.co/microsoft/deberta-v3-base). In order to train the model the following dataset where used: |
|
- tyqiangz/multilingual-sentiments |
|
- cardiffnlp/tweet_sentiment_multilingual |
|
- mteb/tweet_sentiment_multilingual |
|
- Sp1786/multiclass-sentiment-analysis-dataset |
|
- ABSC amazon review |
|
- SST2 |
|
|
|
# Evaluation and comparison with GPT-4o model: |
|
|
|
| Dataset | Model | F1 | Accuracy | |
|
|------------------|--------|--------|----------| |
|
| **sst2** | Our | 0.6161 | 0.9231 | |
|
| | GPT-4 | 0.6113 | 0.8605 | |
|
| **sent-eng** | Our | 0.6289 | 0.6470 | |
|
| | GPT-4 | 0.4611 | 0.5870 | |
|
| **sent-twi** | Our | 0.3368 | 0.3488 | |
|
| | GPT-4 | 0.5049 | 0.5385 | |
|
| **mixed** | Our | 0.5644 | 0.7786 | |
|
| | GPT-4 | 0.5336 | 0.6863 | |
|
| **absc-laptop** | Our | 0.5513 | 0.6682 | |
|
| | GPT-4 | 0.6679 | 0.7642 | |
|
| **absc-rest** | Our | 0.6149 | 0.7726 | |
|
| | GPT-4 | 0.7057 | 0.8385 | |
|
| **stanford** | Our | 0.8352 | 0.8353 | |
|
| | GPT-4 | 0.8045 | 0.8032 | |
|
| **amazon-var** | Our | 0.6432 | 0.9647 | |
|
| | GPT-4 | 0.0000 | 0.9450 | |
|
|
|
# Reference |
|
TBA |