alexander-sh's picture
Update README.md
cd321af verified
|
raw
history blame
1.4 kB
metadata
license: mit

Model

Multi-language sentiment classification model developed over the Microsoft DeBERTa-v3 base model. In order to train the model the following dataset where used:

  • tyqiangz/multilingual-sentiments
  • cardiffnlp/tweet_sentiment_multilingual
  • mteb/tweet_sentiment_multilingual
  • Sp1786/multiclass-sentiment-analysis-dataset
  • ABSC amazon review
  • SST2

Evaluation and comparison with GPT-4o model:

Dataset Model F1 Accuracy
sst2 Our 0.6161 0.9231
GPT-4 0.6113 0.8605
sent-eng Our 0.6289 0.6470
GPT-4 0.4611 0.5870
sent-twi Our 0.3368 0.3488
GPT-4 0.5049 0.5385
mixed Our 0.5644 0.7786
GPT-4 0.5336 0.6863
absc-laptop Our 0.5513 0.6682
GPT-4 0.6679 0.7642
absc-rest Our 0.6149 0.7726
GPT-4 0.7057 0.8385
stanford Our 0.8352 0.8353
GPT-4 0.8045 0.8032
amazon-var Our 0.6432 0.9647
GPT-4 0.0000 0.9450

Reference

TBA