Book Page Count Predictor
Model Details
- Model Type: AutoGluon Tabular Predictor (Ensemble)
- Task: Regression (Page Count Prediction)
- Framework: AutoGluon 1.4.0
- Training Data: Augmented book dimensions dataset
- Input Features:
Height
,Width
,Depth
,Genre
- Output: Predicted page count (integer)
Performance Metrics
- MAE: ~15–25 pages (varies by test set)
- RMSE: ~20–35 pages
- R² Score: 0.85–0.95
Intended Use
- Predict book page count from physical dimensions
- Publishing industry applications
- Library cataloging assistance
- Book manufacturing planning
Limitations
- Trained on limited genre categories (
0
,1
) - Assumes standard book formats
- May not generalize to unusual book types (e.g., children’s board books, art books)
Training Details
- Dataset:
its-zion-18/Books-tabular-dataset
- Train/Test Split: 80/20
- Training Time: ~5 minutes (300s limit)
- AutoGluon Preset:
best_quality
Usage Example
Load Native AutoGluon Predictor
from autogluon.tabular import TabularPredictor
# Load the model (unzip first if using the .zip version)
predictor = TabularPredictor.load('path_to_model')
# Make prediction
sample = {'Height': 9.0, 'Width': 6.0, 'Depth': 1.0, 'Genre': 0}
prediction = predictor.predict(sample)
print("Predicted page count:", int(prediction))
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Dataset used to train yusenthebot/books-page-count-predictor
Evaluation results
- MAE (pages) on its-zion-18/Books-tabular-datasetself-reported15-25
- RMSE (pages) on its-zion-18/Books-tabular-datasetself-reported20-35
- R² Score on its-zion-18/Books-tabular-datasetself-reported0.85-0.95