Book Page Count Predictor

Model Details

  • Model Type: AutoGluon Tabular Predictor (Ensemble)
  • Task: Regression (Page Count Prediction)
  • Framework: AutoGluon 1.4.0
  • Training Data: Augmented book dimensions dataset
  • Input Features: Height, Width, Depth, Genre
  • Output: Predicted page count (integer)

Performance Metrics

  • MAE: ~15–25 pages (varies by test set)
  • RMSE: ~20–35 pages
  • R² Score: 0.85–0.95

Intended Use

  • Predict book page count from physical dimensions
  • Publishing industry applications
  • Library cataloging assistance
  • Book manufacturing planning

Limitations

  • Trained on limited genre categories (0, 1)
  • Assumes standard book formats
  • May not generalize to unusual book types (e.g., children’s board books, art books)

Training Details

Usage Example

Load Native AutoGluon Predictor

from autogluon.tabular import TabularPredictor

# Load the model (unzip first if using the .zip version)
predictor = TabularPredictor.load('path_to_model')

# Make prediction
sample = {'Height': 9.0, 'Width': 6.0, 'Depth': 1.0, 'Genre': 0}
prediction = predictor.predict(sample)
print("Predicted page count:", int(prediction))
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train yusenthebot/books-page-count-predictor

Evaluation results

  • MAE (pages) on its-zion-18/Books-tabular-dataset
    self-reported
    15-25
  • RMSE (pages) on its-zion-18/Books-tabular-dataset
    self-reported
    20-35
  • R² Score on its-zion-18/Books-tabular-dataset
    self-reported
    0.85-0.95