Backward GPT-2 Model
Overview
A GPT-2 model fine-tuned for backward generation (answers → questions) in Turkish.
Input Format
### Response:
[answer text in Turkish]
Output Format
Generated text must be reversed to obtain:
### Instruction:
[instruction text in Turkish]
### Input:
[optional input text in Turkish]
Generation Parameters
- Temperature: 1.4
- Top-p: 0.95
- Top-k: 20
- Repetition penalty: 1.5
- EOS token IDs: [36320, eos_token_id]
Example Code
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("ytu-ce-cosmos/backward-cosmos-gpt2-v1", trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained("ytu-ce-cosmos/backward-cosmos-gpt2-v1")
# Turkish answer
answer = "İstanbul, Türkiye'nin en kalabalık şehridir ve tarihi, kültürel zenginliği ile ünlüdür."
prompt = f"\n### Response:\n{answer}"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=40,
temperature=1.4,
top_p=0.95,
top_k=20,
repetition_penalty=1.5,
eos_token_id=[36320, tokenizer.eos_token_id],
pad_token_id=tokenizer.eos_token_id
)
generated_tokens = outputs[0][inputs.input_ids.shape[1]:]
reversed_tokens = generated_tokens.flip(dims=[0])
generated_text = tokenizer.decode(reversed_tokens, skip_special_tokens=True)
parts = generated_text.split("### Input:")
instruction = parts[0].replace("### Instruction:", "").strip()
input_text = parts[1].strip() if len(parts) > 1 else None
- Downloads last month
- 55
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support