Medical Embedding
Collection
12 items
•
Updated
•
3
This is a sentence-transformers model finetuned from google/embeddinggemma-300m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(4): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yasserrmd/endocrinology-gemma-300m-emb")
# Run inference
queries = [
"How does in utero exposure to excess anti-M\u00fcllerian hormone (AMH) affect the GnRH neuronal morphology and electrical activity in offspring?\n",
]
documents = [
'In utero exposure to excess AMH leads to protracted changes in GnRH neuronal morphology and electrical activity in offspring. PAMH female mice exhibit increased spine density on the soma and along the primary dendrite of GnRH neurons compared to controls during diestrus. This increased spine density is accompanied by a significant increase in the number of vesicular GABA transporter (vGaT) appositions onto GnRH cells. While there are no significant differences in the number of vesicular glutamate transporter 2 (vGluT2) appositions, it is important to note that GABA, although primarily recognized as an inhibitory neurotransmitter in the adult brain, is excitatory in adult GnRH neurons. This elevated hypothalamic excitatory apposition onto GnRH neurons in PAMH animals translates into increased neuronal activity.',
'Prophylactic thyroidectomy is recommended as early as the age of five years in confirmed RET mutation carriers in MEN2A or FMTC families with normal (stimulated) plasma calcitonin levels. However, some clinicians may prefer to wait until the pentagastrin test results are abnormal before performing thyroidectomy. This is because the test for calcitonin levels may give false negative results, and medullary thyroid carcinoma has been encountered in children with normal calcitonin levels who underwent thyroidectomy after DNA diagnosis.',
'The most common co-morbidities reported by patients with GHD are hypertension, arthritis, and diabetes mellitus. Additionally, 26% of patients had a history of fractures.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.7737, 0.0678, 0.0061]])
sentence_0
and sentence_1
sentence_0 | sentence_1 | |
---|---|---|
type | string | string |
details |
|
|
sentence_0 | sentence_1 |
---|---|
What factors contribute to the development of hypoglycemia unawareness in individuals with diabetes? |
Hypoglycemia unawareness, also known as HAAF (hypoglycemia-associated autonomic failure), is a known complication of insulin therapy for type 1 and type 2 diabetes. Even a single episode of antecedent hypoglycemia can alter the neuroendocrine response during subsequent hypoglycemia. While the exact mechanism of HAAF is not fully understood, improved brain glucose transport is considered a major factor. In individuals with HAAF, brain glucose concentration is higher compared to controls. Chronic and recurrent hypoglycemia can enhance blood-brain glucose transport capacity, and increased expression of glucose transporters at the blood-brain barrier has been observed in animal models. HAAF is characterized by a lack of suppression of endogenous insulin secretion and failure of glucagon and catecholamine secretion during hypoglycemia. Decreased cortisol secretion is commonly present, but adrenal medullary effects predominate. Increased CRH secretion, acting via CRH receptor 1, may be invol... |
How was the baby boy with the TRβ R243W mutation diagnosed with resistance to thyroid hormone (RTH) instead of neonatal Graves' disease (GD)? |
The baby boy was initially suspected of having neonatal GD due to his mother's condition. However, laboratory tests showed that his thyroid-stimulating hormone (TSH) levels were not suppressed, and he had high levels of free T4 (FT4) and free T3 (FT3) with no antibodies related to GD. Based on these findings, he was diagnosed with RTH instead of GD. |
What are the risk factors for developing diabetic muscle infarction (DMI)? |
The risk factors for developing diabetic muscle infarction (DMI) include poorly controlled diabetes mellitus, particularly type 1 diabetes, and the presence of late complications such as nephropathy, retinopathy, and neuropathy. Other factors that may contribute to the development of DMI include hyperglycemia and long-standing diabetes. |
MultipleNegativesRankingLoss
with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
per_device_train_batch_size
: 6per_device_eval_batch_size
: 6num_train_epochs
: 1multi_dataset_batch_sampler
: round_robinoverwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 6per_device_eval_batch_size
: 6per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config
: Nonedeepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
: auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robinrouter_mapping
: {}learning_rate_mapping
: {}Epoch | Step | Training Loss |
---|---|---|
0.1500 | 500 | 0.0224 |
0.2999 | 1000 | 0.0171 |
0.4499 | 1500 | 0.0158 |
0.5999 | 2000 | 0.0062 |
0.7499 | 2500 | 0.0095 |
0.8998 | 3000 | 0.0043 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
google/embeddinggemma-300m