YAML Metadata Warning: The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

Model Card

Model Page: [Gemma-7b-aplaca] use aplaca datasets finetuned on gemma-7b

Authors: Xiaohan

Model Information

Usage

Below we share some code snippets on how to get quickly started with running the model. First make sure to pip install -U transformers, then copy the snippet from the section that is relevant for your usecase.

Running the model on a CPU

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("xiaohan1/gemma-7b-alpaca")
model = AutoModelForCausalLM.from_pretrained("xiaohan1/gemma-7b-alpaca")

input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))

Running the model on a single / multi GPU

# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("xiaohan1/gemma-7b-alpaca")
model = AutoModelForCausalLM.from_pretrained("xiaohan1/gemma-7b-alpaca", device_map="auto")

input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))

Running the model on a GPU using different precisions

  • Using torch.float16
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("xiaohan1/gemma-7b-alpaca")
model = AutoModelForCausalLM.from_pretrained("xiaohan1/gemma-7b-alpaca", device_map="auto", torch_dtype=torch.float16)

input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
  • Using torch.bfloat16
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("xiaohan1/gemma-7b-alpaca")
model = AutoModelForCausalLM.from_pretrained("xiaohan1/gemma-7b-alpaca", device_map="auto", torch_dtype=torch.bfloat16)

input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))

Quantized Versions through bitsandbytes

  • Using 8-bit precision (int8)
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

quantization_config = BitsAndBytesConfig(load_in_8bit=True)

tokenizer = AutoTokenizer.from_pretrained("xiaohan1/gemma-7b-alpaca")
model = AutoModelForCausalLM.from_pretrained("xiaohan1/gemma-7b-alpaca", quantization_config=quantization_config)

input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
  • Using 4-bit precision
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

quantization_config = BitsAndBytesConfig(load_in_4bit=True)

tokenizer = AutoTokenizer.from_pretrained("xiaohan1/gemma-7b-alpaca")
model = AutoModelForCausalLM.from_pretrained("xiaohan1/gemma-7b-alpaca", quantization_config=quantization_config)

input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))

Other optimizations

  • Flash Attention 2

First make sure to install flash-attn in your environment pip install flash-attn

model = AutoModelForCausalLM.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
+   attn_implementation="flash_attention_2"
).to(0)
Downloads last month
-
Safetensors
Model size
8.54B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support