Example
from typing import Iterable, List, Tuple
import jieba
import onnxruntime as ort
import soundfile as sf
import torch
class Lexicon:
def __init__(self, lexion_filename: str, tokens_filename: str):
tokens = dict()
with open(tokens_filename, encoding="utf-8") as f:
for line in f:
s, i = line.split()
tokens[s] = int(i)
lexicon = dict()
with open(lexion_filename, encoding="utf-8") as f:
for line in f:
splits = line.split()
word_or_phrase = splits[0]
phone_tone_list = splits[1:]
assert len(phone_tone_list) & 1 == 0, len(phone_tone_list)
phones = phone_tone_list[: len(phone_tone_list) // 2]
phones = [tokens[p] for p in phones]
tones = phone_tone_list[len(phone_tone_list) // 2 :]
tones = [int(t) for t in tones]
lexicon[word_or_phrase] = (phones, tones)
lexicon["呣"] = lexicon["母"]
lexicon["嗯"] = lexicon["恩"]
self.lexicon = lexicon
punctuation = ["!", "?", "…", ",", ".", "'", "-"]
for p in punctuation:
i = tokens[p]
tone = 0
self.lexicon[p] = ([i], [tone])
self.lexicon[" "] = ([tokens["_"]], [0])
def _convert(self, text: str) -> Tuple[List[int], List[int]]:
phones = []
tones = []
if text == ",":
text = ","
elif text == "。":
text = "."
elif text == "!":
text = "!"
elif text == "?":
text = "?"
if text not in self.lexicon:
print("t", text)
if len(text) > 1:
for w in text:
print("w", w)
p, t = self.convert(w)
if p:
phones += p
tones += t
return phones, tones
phones, tones = self.lexicon[text]
return phones, tones
def convert(self, text_list: Iterable[str]) -> Tuple[List[int], List[int]]:
phones = []
tones = []
for text in text_list:
print(text)
p, t = self._convert(text)
phones += p
tones += t
return phones, tones
class OnnxModel:
def __init__(self, filename):
session_opts = ort.SessionOptions()
session_opts.inter_op_num_threads = 1
session_opts.intra_op_num_threads = 4
self.session_opts = session_opts
self.model = ort.InferenceSession(
filename,
sess_options=self.session_opts,
providers=["CPUExecutionProvider"],
)
meta = self.model.get_modelmeta().custom_metadata_map
self.bert_dim = int(meta["bert_dim"])
self.ja_bert_dim = int(meta["ja_bert_dim"])
self.add_blank = int(meta["add_blank"])
self.sample_rate = int(meta["sample_rate"])
self.speaker_id = int(meta["speaker_id"])
self.lang_id = int(meta["lang_id"])
self.sample_rate = int(meta["sample_rate"])
def __call__(self, x, tones):
"""
Args:
x: 1-D int64 torch tensor
tones: 1-D int64 torch tensor
"""
x = x.unsqueeze(0)
tones = tones.unsqueeze(0)
print(x.shape, tones.shape)
sid = torch.tensor([self.speaker_id], dtype=torch.int64)
noise_scale = torch.tensor([0.6], dtype=torch.float32)
length_scale = torch.tensor([1.0], dtype=torch.float32)
noise_scale_w = torch.tensor([0.8], dtype=torch.float32)
x_lengths = torch.tensor([x.shape[-1]], dtype=torch.int64)
y = self.model.run(
["y"],
{
"x": x.numpy(),
"x_lengths": x_lengths.numpy(),
"tones": tones.numpy(),
"sid": sid.numpy(),
"noise_scale": noise_scale.numpy(),
"noise_scale_w": noise_scale_w.numpy(),
"length_scale": length_scale.numpy(),
},
)[0][0][0]
return y
def main():
lexicon = Lexicon(lexion_filename="./lexicon.txt", tokens_filename="./tokens.txt")
text = "这是一个使用 next generation kaldi 的 text to speech 中英文例子. Thank you! 你觉得如何呢? are you ok? Fantastic! How about you?"
text = text.lower() # this step is crutial for split words correctly
s = jieba.cut(text, HMM=True)
phones, tones = lexicon.convert(s)
model = OnnxModel("./model.onnx")
if model.add_blank:
new_phones = [0] * (2 * len(phones) + 1)
new_tones = [0] * (2 * len(tones) + 1)
new_phones[1::2] = phones
new_tones[1::2] = tones
phones = new_phones
tones = new_tones
phones = torch.tensor(phones, dtype=torch.int64)
tones = torch.tensor(tones, dtype=torch.int64)
print(phones.shape, tones.shape)
y = model(x=phones, tones=tones)
sf.write("./test.wav", y, model.sample_rate)
if __name__ == "__main__":
main()
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for wolfofbackstreet/melotts_chinese_mix_english_onnx
Base model
myshell-ai/MeloTTS-Chinese