wissamantoun/WebOrganizer-FormatClassifier-ModernBERT
All credit goes to the original authors of the model and dataset. This is a retraining of the original model with a different base model
The TopicClassifier organizes web content into 17 categories based on the URL and text contents of web pages. The model is a ModernBERT-base with 140M parameters fine-tuned on the following training data:
- WebOrganizer/TopicAnnotations-Llama-3.1-8B: 1M documents annotated by Llama-3.1-8B (first-stage training)
- WebOrganizer/TopicAnnotations-Llama-3.1-405B-FP8: 100K documents annotated by Llama-3.1-405B-FP8 (second-stage training)
All Domain Classifiers
- wissamantoun/WebOrganizer-FormatClassifier-ModernBERT ← you are here!
- wissamantoun/WebOrganizer-TopicClassifier-ModernBERT
Usage
This classifier expects input in the following input format:
{url}
{text}
Example:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("wissamantoun/WebOrganizer-FormatClassifier-ModernBERT")
model = AutoModelForSequenceClassification.from_pretrained(
"wissamantoun/WebOrganizer-FormatClassifier-ModernBERT",
trust_remote_code=True,
use_memory_efficient_attention=False)
web_page = """http://www.example.com
How to build a computer from scratch? Here are the components you need..."""
inputs = tokenizer([web_page], return_tensors="pt")
outputs = model(**inputs)
probs = outputs.logits.softmax(dim=-1)
print(probs.argmax(dim=-1))
# -> 5 ("Hardware" topic)
You can convert the logits
of the model with a softmax to obtain a probability distribution over the following 24 categories (in order of labels, also see id2label
and label2id
in the model config):
- Academic Writing
- Content Listing
- Creative Writing
- Customer Support
- Comment Section
- FAQ
- Truncated
- Knowledge Article
- Legal Notices
- Listicle
- News Article
- Nonfiction Writing
- About (Org
- News (Org
- About (Pers
- Personal Blog
- Product Page
- Q&A Forum
- Spam / Ads
- Structured Data
- Documentation
- Audio Transcript
- Tutorial
- User Review
The full definitions of the categories can be found in the taxonomy config.
Scores
***** pred metrics *****
test_accuracy = 0.8154
test_accuracy__0 = 0.855
test_accuracy__1 = 0.7558
test_accuracy__10 = 0.9071
test_accuracy__11 = 0.6869
test_accuracy__12 = 0.8055
test_accuracy__13 = 0.7897
test_accuracy__14 = 0.8592
test_accuracy__15 = 0.8541
test_accuracy__16 = 0.8788
test_accuracy__17 = 0.7733
test_accuracy__18 = 0.7286
test_accuracy__19 = 0.6989
test_accuracy__2 = 0.7474
test_accuracy__20 = 0.7609
test_accuracy__21 = 0.7807
test_accuracy__22 = 0.7703
test_accuracy__23 = 0.7931
test_accuracy__3 = 0.6351
test_accuracy__4 = 0.871
test_accuracy__5 = 0.8333
test_accuracy__6 = 0.6125
test_accuracy__7 = 0.6416
test_accuracy__8 = 0.78
test_accuracy__9 = 0.7668
test_accuracy_conf50 = 0.8312
test_accuracy_conf50__0 = 0.8852
test_accuracy_conf50__1 = 0.7651
test_accuracy_conf50__10 = 0.9167
test_accuracy_conf50__11 = 0.7168
test_accuracy_conf50__12 = 0.8256
test_accuracy_conf50__13 = 0.7996
test_accuracy_conf50__14 = 0.8696
test_accuracy_conf50__15 = 0.8684
test_accuracy_conf50__16 = 0.8878
test_accuracy_conf50__17 = 0.7838
test_accuracy_conf50__18 = 0.7663
test_accuracy_conf50__19 = 0.7276
test_accuracy_conf50__2 = 0.7609
test_accuracy_conf50__20 = 0.7907
test_accuracy_conf50__21 = 0.8
test_accuracy_conf50__22 = 0.7927
test_accuracy_conf50__23 = 0.7904
test_accuracy_conf50__3 = 0.6617
test_accuracy_conf50__4 = 0.877
test_accuracy_conf50__5 = 0.8571
test_accuracy_conf50__6 = 0.6299
test_accuracy_conf50__7 = 0.6786
test_accuracy_conf50__8 = 0.7755
test_accuracy_conf50__9 = 0.7796
test_accuracy_conf75 = 0.9003 <--- Metric from the paper
test_accuracy_conf75__0 = 0.9412
test_accuracy_conf75__1 = 0.8318
test_accuracy_conf75__10 = 0.9542
test_accuracy_conf75__11 = 0.8478
test_accuracy_conf75__12 = 0.8841
test_accuracy_conf75__13 = 0.8724
test_accuracy_conf75__14 = 0.914
test_accuracy_conf75__15 = 0.9345
test_accuracy_conf75__16 = 0.9316
test_accuracy_conf75__17 = 0.8667
test_accuracy_conf75__18 = 0.8446
test_accuracy_conf75__19 = 0.8209
test_accuracy_conf75__2 = 0.8333
test_accuracy_conf75__20 = 0.9333
test_accuracy_conf75__21 = 0.8587
test_accuracy_conf75__22 = 0.8708
test_accuracy_conf75__23 = 0.8309
test_accuracy_conf75__3 = 0.7292
test_accuracy_conf75__4 = 0.9357
test_accuracy_conf75__5 = 0.9032
test_accuracy_conf75__6 = 0.7816
test_accuracy_conf75__7 = 0.8011
test_accuracy_conf75__8 = 0.8409
test_accuracy_conf75__9 = 0.8592
test_accuracy_label_average = 0.7744
test_accuracy_label_average_conf50 = 0.7919
test_accuracy_label_average_conf75 = 0.8676
test_accuracy_label_min = 0.6125
test_accuracy_label_min_conf75 = 0.7292 <--- Metric from the paper
test_loss = 0.6023
test_proportion_conf50 = 0.9638
test_proportion_conf75 = 0.7951
test_runtime = 0:00:08.38
test_samples_per_second = 1192.262
test_steps_per_second = 37.318
Citation
@article{wettig2025organize,
title={Organize the Web: Constructing Domains Enhances Pre-Training Data Curation},
author={Alexander Wettig and Kyle Lo and Sewon Min and Hannaneh Hajishirzi and Danqi Chen and Luca Soldaini},
journal={arXiv preprint arXiv:2502.10341},
year={2025}
}
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for wissamantoun/WebOrganizer-FormatClassifier-ModernBERT
Base model
answerdotai/ModernBERT-base