See axolotl config
axolotl version: 0.8.0
base_model: axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16
model_type: Llama4ForConditionalGeneration
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
strict: false
# torch_compile: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_glu_activation: true
liger_rms_norm: true
liger_layer_norm: true
llama4_linearized_experts: true
load_in_4bit: true
adapter: qlora
lora_r: 32
lora_alpha: 64
lora_target_modules:
- self_attn.q_proj
- self_attn.k_proj
- self_attn.v_proj
- self_attn.o_proj
- shared_expert.gate_proj
- shared_expert.up_proj
- shared_expert.down_proj
# - experts.gate_projs.[0-9]+$
# - experts.up_projs.[0-9]+$
# - experts.down_projs.[0-9]+$
lora_modules_to_save:
# - lm_head
# - embed_tokens
chat_template: llama4
datasets:
- path: mlabonne/FineTome-100k
type: chat_template
split: train[:20%]
field_messages: conversations
message_property_mappings:
role: from
content: value
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 1e-4
bf16: true
tf32: true
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 1
saves_per_epoch: 1
weight_decay: 0.0
fsdp:
- auto_wrap
- full_shard
fsdp_config:
fsdp_transformer_layer_cls_to_wrap: Llama4TextDecoderLayer
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
fsdp_activation_checkpointing: true
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|eot|>
outputs/out
This model is a fine-tuned version of axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16 on the mlabonne/FineTome-100k dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3.0
Training results
Framework versions
- PEFT 0.15.1
- Transformers 4.51.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support