|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
base_model: intfloat/multilingual-e5-small |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: 'query: Baiklah, kita cakap lagi nanti, Mark. Selamat hari!' |
|
- text: 'query: Tôi xin lỗi nhưng tôi phải đi' |
|
- text: 'query: 次回行くときは、私を連れて行ってください。もっと自然の中で活動したいと思っています。' |
|
- text: 'query: Entschuldigung, ich muss jetzt gehen.' |
|
- text: 'query: Buenos días, ¿cómo están ustedes?' |
|
pipeline_tag: text-classification |
|
inference: true |
|
model-index: |
|
- name: SetFit with intfloat/multilingual-e5-small |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.9333333333333333 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with intfloat/multilingual-e5-small |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) |
|
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 2 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 0 | <ul><li>'query: Értem. Mit csinálunk most?'</li><li>'query: Ola Luca, que tal? Rematache o traballo?'</li><li>'query: Lijepo je. Hvala.'</li></ul> | |
|
| 1 | <ul><li>'query: Жөнейін, кейін кездесеміз.'</li><li>'query: Така, ќе се видиме повторно.'</li><li>'query: ठीक है बाद में बात करते हैं मार्क अच्छा दिन'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.9333 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("setfit_model_id") |
|
# Run inference |
|
preds = model("query: Tôi xin lỗi nhưng tôi phải đi") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 2 | 7.2168 | 25 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 346 | |
|
| 1 | 346 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 2) |
|
- num_epochs: (1, 16) |
|
- max_steps: 2500 |
|
- sampling_strategy: undersampling |
|
- body_learning_rate: (1e-06, 1e-06) |
|
- head_learning_rate: 0.001 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- run_name: multilingual-e5-small |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0002 | 1 | 0.3607 | - | |
|
| 0.0100 | 50 | 0.3634 | 0.3452 | |
|
| 0.0200 | 100 | 0.3493 | 0.3377 | |
|
| 0.0300 | 150 | 0.3244 | 0.3234 | |
|
| 0.0400 | 200 | 0.3244 | 0.3034 | |
|
| 0.0500 | 250 | 0.2931 | 0.2731 | |
|
| 0.0600 | 300 | 0.2471 | 0.2398 | |
|
| 0.0700 | 350 | 0.237 | 0.2168 | |
|
| 0.0800 | 400 | 0.1964 | 0.2082 | |
|
| 0.0900 | 450 | 0.2319 | 0.198 | |
|
| 0.1000 | 500 | 0.2003 | 0.1968 | |
|
| 0.1100 | 550 | 0.2014 | 0.1968 | |
|
| 0.1200 | 600 | 0.1617 | 0.1879 | |
|
| 0.1300 | 650 | 0.2214 | 0.1798 | |
|
| 0.1400 | 700 | 0.2498 | 0.1768 | |
|
| 0.1500 | 750 | 0.1527 | 0.1764 | |
|
| 0.1600 | 800 | 0.1134 | 0.1733 | |
|
| 0.1700 | 850 | 0.1393 | 0.1614 | |
|
| 0.1800 | 900 | 0.1052 | 0.1549 | |
|
| 0.1900 | 950 | 0.1772 | 0.149 | |
|
| 0.2000 | 1000 | 0.1065 | 0.1504 | |
|
| 0.2100 | 1050 | 0.087 | 0.1392 | |
|
| 0.2200 | 1100 | 0.1416 | 0.1333 | |
|
| 0.2300 | 1150 | 0.0767 | 0.1279 | |
|
| 0.2400 | 1200 | 0.1228 | 0.1243 | |
|
| 0.2500 | 1250 | 0.099 | 0.1128 | |
|
| 0.2599 | 1300 | 0.1125 | 0.1106 | |
|
| 0.2699 | 1350 | 0.1012 | 0.1156 | |
|
| 0.2799 | 1400 | 0.0343 | 0.1022 | |
|
| 0.2899 | 1450 | 0.0814 | 0.1012 | |
|
| 0.2999 | 1500 | 0.0947 | 0.0965 | |
|
| 0.3099 | 1550 | 0.0799 | 0.0964 | |
|
| 0.3199 | 1600 | 0.113 | 0.0942 | |
|
| 0.3299 | 1650 | 0.1125 | 0.0917 | |
|
| 0.3399 | 1700 | 0.0507 | 0.0899 | |
|
| 0.3499 | 1750 | 0.0986 | 0.0938 | |
|
| 0.3599 | 1800 | 0.0885 | 0.0913 | |
|
| 0.3699 | 1850 | 0.0712 | 0.0841 | |
|
| 0.3799 | 1900 | 0.1131 | 0.0851 | |
|
| 0.3899 | 1950 | 0.0701 | 0.0852 | |
|
| 0.3999 | 2000 | 0.0805 | 0.0878 | |
|
| 0.4099 | 2050 | 0.0375 | 0.0814 | |
|
| 0.4199 | 2100 | 0.1236 | 0.0797 | |
|
| 0.4299 | 2150 | 0.0532 | 0.0881 | |
|
| 0.4399 | 2200 | 0.0265 | 0.0806 | |
|
| 0.4499 | 2250 | 0.1268 | 0.0801 | |
|
| 0.4599 | 2300 | 0.0557 | 0.0797 | |
|
| 0.4699 | 2350 | 0.0956 | 0.0832 | |
|
| 0.4799 | 2400 | 0.0671 | 0.081 | |
|
| 0.4899 | 2450 | 0.1394 | 0.0794 | |
|
| 0.4999 | 2500 | 0.1165 | 0.0798 | |
|
|
|
### Framework Versions |
|
- Python: 3.10.11 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 2.7.0 |
|
- Transformers: 4.39.3 |
|
- PyTorch: 2.4.0 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |