|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
base_model: intfloat/multilingual-e5-small |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: 'query: Sí, la próxima vez que vayas, cuenta conmigo. He querido salir y hacer |
|
más actividades en la naturaleza.' |
|
- text: 'query: I''m man, I''m leaving now.' |
|
- text: 'query: Ja, forse possiamo fare un giro in bicicletta insieme.' |
|
- text: 'query: Mak saya suruh balik, jumpa lagi.' |
|
- text: 'query: İnanılmaz, bu harika! Bir ayı gördüğüne inanamıyorum!' |
|
pipeline_tag: text-classification |
|
inference: true |
|
--- |
|
|
|
# SetFit with intfloat/multilingual-e5-small |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) |
|
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 2 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 1 | <ul><li>'query: Tja, måste dra nu, ses senare.'</li><li>'query: Ispričavam se, moram sada otići.'</li><li>'query: Przepraszam, muszę już iść.'</li></ul> | |
|
| 0 | <ul><li>'query: Sveiki, kā jums klājas?'</li><li>'query: அதிர்ச்சிகரமானது, அது மிகவும் அருமையாக இருக்கிறது! நீ கரடியை பார்த்தது எனக்கு நம்பிக்கையே வரவில்லை!'</li><li>'query: Ég hef það fínt, takk. Og þú?'</li></ul> | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("setfit_model_id") |
|
# Run inference |
|
preds = model("query: I'm man, I'm leaving now.") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 2 | 7.6965 | 31 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 902 | |
|
| 1 | 910 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 2) |
|
- num_epochs: (1, 16) |
|
- max_steps: -1 |
|
- sampling_strategy: undersampling |
|
- body_learning_rate: (1e-05, 1e-05) |
|
- head_learning_rate: 0.001 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.1 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- run_name: multilingual-e5-small |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: True |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0000 | 1 | 0.3613 | - | |
|
| 0.0005 | 50 | 0.3577 | - | |
|
| 0.0010 | 100 | 0.3511 | 0.3413 | |
|
| 0.0015 | 150 | 0.3372 | - | |
|
| 0.0019 | 200 | 0.3447 | 0.3347 | |
|
| 0.0024 | 250 | 0.3349 | - | |
|
| 0.0029 | 300 | 0.3326 | 0.3224 | |
|
| 0.0034 | 350 | 0.3372 | - | |
|
| 0.0039 | 400 | 0.3185 | 0.3039 | |
|
| 0.0044 | 450 | 0.2828 | - | |
|
| 0.0049 | 500 | 0.3055 | 0.2774 | |
|
| 0.0054 | 550 | 0.2594 | - | |
|
| 0.0058 | 600 | 0.2779 | 0.2489 | |
|
| 0.0063 | 650 | 0.2486 | - | |
|
| 0.0068 | 700 | 0.2321 | 0.22 | |
|
| 0.0073 | 750 | 0.1838 | - | |
|
| 0.0078 | 800 | 0.1845 | 0.2075 | |
|
| 0.0083 | 850 | 0.1899 | - | |
|
| 0.0088 | 900 | 0.2147 | 0.2025 | |
|
| 0.0093 | 950 | 0.1644 | - | |
|
| 0.0097 | 1000 | 0.2019 | 0.1821 | |
|
| 0.0102 | 1050 | 0.2309 | - | |
|
| 0.0107 | 1100 | 0.2084 | 0.1784 | |
|
| 0.0112 | 1150 | 0.1508 | - | |
|
| 0.0117 | 1200 | 0.1064 | 0.1453 | |
|
| 0.0122 | 1250 | 0.1376 | - | |
|
| 0.0127 | 1300 | 0.0828 | 0.121 | |
|
| 0.0132 | 1350 | 0.1628 | - | |
|
| 0.0136 | 1400 | 0.1308 | 0.1018 | |
|
| 0.0141 | 1450 | 0.0566 | - | |
|
| 0.0146 | 1500 | 0.0953 | 0.0767 | |
|
| 0.0151 | 1550 | 0.1607 | - | |
|
| 0.0156 | 1600 | 0.1322 | 0.0625 | |
|
| 0.0161 | 1650 | 0.0861 | - | |
|
| 0.0166 | 1700 | 0.0926 | 0.0423 | |
|
| 0.0171 | 1750 | 0.0338 | - | |
|
| 0.0175 | 1800 | 0.1029 | 0.0344 | |
|
| 0.0180 | 1850 | 0.0442 | - | |
|
| 0.0185 | 1900 | 0.019 | 0.0256 | |
|
| 0.0190 | 1950 | 0.0489 | - | |
|
| 0.0195 | 2000 | 0.0675 | 0.0187 | |
|
|
|
### Framework Versions |
|
- Python: 3.10.11 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 2.7.0 |
|
- Transformers: 4.39.0 |
|
- PyTorch: 2.4.0 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |