morriszms's picture
Upload folder using huggingface_hub
8bb6dfd verified
metadata
license: mit
datasets:
  - microsoft/mediflow
  - ncbi/pubmed
  - epfl-llm/guidelines
  - starmpcc/Asclepius-Synthetic-Clinical-Notes
  - akemiH/NoteChat
  - zhengyun21/PMC-Patients
  - jpcorb20/medical_wikipedia
language:
  - en
base_model: microsoft/MediPhi-Instruct
library_name: transformers
tags:
  - merge
  - mergekit
  - medical
  - clinical
  - TensorBlock
  - GGUF
TensorBlock

Website Twitter Discord GitHub Telegram

microsoft/MediPhi-Instruct - GGUF

This repo contains GGUF format model files for microsoft/MediPhi-Instruct.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b5753.

Our projects

Forge
Forge Project
An OpenAI-compatible multi-provider routing layer.
πŸš€ Try it now! πŸš€
Awesome MCP Servers TensorBlock Studio
MCP Servers Studio
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
πŸ‘€ See what we built πŸ‘€ πŸ‘€ See what we built πŸ‘€

Prompt template

<|system|>
{system_prompt}<|end|>
<|user|>
{prompt}<|end|>
<|assistant|>

Model file specification

Filename Quant type File Size Description
MediPhi-Instruct-Q2_K.gguf Q2_K 1.416 GB smallest, significant quality loss - not recommended for most purposes
MediPhi-Instruct-Q3_K_S.gguf Q3_K_S 1.682 GB very small, high quality loss
MediPhi-Instruct-Q3_K_M.gguf Q3_K_M 1.955 GB very small, high quality loss
MediPhi-Instruct-Q3_K_L.gguf Q3_K_L 2.088 GB small, substantial quality loss
MediPhi-Instruct-Q4_0.gguf Q4_0 2.176 GB legacy; small, very high quality loss - prefer using Q3_K_M
MediPhi-Instruct-Q4_K_S.gguf Q4_K_S 2.189 GB small, greater quality loss
MediPhi-Instruct-Q4_K_M.gguf Q4_K_M 2.393 GB medium, balanced quality - recommended
MediPhi-Instruct-Q5_0.gguf Q5_0 2.641 GB legacy; medium, balanced quality - prefer using Q4_K_M
MediPhi-Instruct-Q5_K_S.gguf Q5_K_S 2.641 GB large, low quality loss - recommended
MediPhi-Instruct-Q5_K_M.gguf Q5_K_M 2.815 GB large, very low quality loss - recommended
MediPhi-Instruct-Q6_K.gguf Q6_K 3.136 GB very large, extremely low quality loss
MediPhi-Instruct-Q8_0.gguf Q8_0 4.061 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/microsoft_MediPhi-Instruct-GGUF --include "MediPhi-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/microsoft_MediPhi-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'