caduceus-ps_seqlen-131k_d_model-256_n_layer-16_ft_BioS45_1kbpHG19_DHSs_H3K27AC
This model is a fine-tuned version of kuleshov-group/caduceus-ps_seqlen-131k_d_model-256_n_layer-16 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4990
- F1 Score: 0.7978
- Precision: 0.7869
- Recall: 0.8091
- Accuracy: 0.7796
- Auc: 0.8547
- Prc: 0.8524
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc |
---|---|---|---|---|---|---|---|---|---|
0.6899 | 0.2103 | 500 | 0.6816 | 0.7912 | 0.6953 | 0.9178 | 0.7396 | 0.8124 | 0.8042 |
0.6679 | 0.4207 | 1000 | 0.6519 | 0.7869 | 0.7405 | 0.8396 | 0.7556 | 0.8162 | 0.8152 |
0.6396 | 0.6310 | 1500 | 0.6263 | 0.7723 | 0.7632 | 0.7817 | 0.7522 | 0.8162 | 0.8275 |
0.6192 | 0.8414 | 2000 | 0.6002 | 0.7990 | 0.7392 | 0.8693 | 0.7648 | 0.8302 | 0.8273 |
0.5862 | 1.0517 | 2500 | 0.5784 | 0.7987 | 0.7444 | 0.8615 | 0.7665 | 0.8320 | 0.8240 |
0.5651 | 1.2621 | 3000 | 0.5580 | 0.7976 | 0.7590 | 0.8404 | 0.7707 | 0.8298 | 0.8308 |
0.5559 | 1.4724 | 3500 | 0.5487 | 0.7799 | 0.7821 | 0.7778 | 0.7640 | 0.8238 | 0.8303 |
0.534 | 1.6828 | 4000 | 0.5357 | 0.8034 | 0.7297 | 0.8936 | 0.7648 | 0.8369 | 0.8250 |
0.5277 | 1.8931 | 4500 | 0.5225 | 0.7906 | 0.7795 | 0.8020 | 0.7716 | 0.8394 | 0.8379 |
0.5044 | 2.1035 | 5000 | 0.5112 | 0.7989 | 0.7796 | 0.8192 | 0.7783 | 0.8445 | 0.8435 |
0.4975 | 2.3138 | 5500 | 0.5059 | 0.8128 | 0.7694 | 0.8615 | 0.7867 | 0.8456 | 0.8356 |
0.5011 | 2.5242 | 6000 | 0.5066 | 0.7933 | 0.7848 | 0.8020 | 0.7753 | 0.8478 | 0.8459 |
0.4963 | 2.7345 | 6500 | 0.5020 | 0.7975 | 0.7820 | 0.8138 | 0.7779 | 0.8511 | 0.8473 |
0.4887 | 2.9449 | 7000 | 0.4983 | 0.7964 | 0.7909 | 0.8020 | 0.7796 | 0.8549 | 0.8482 |
0.4542 | 3.1552 | 7500 | 0.4961 | 0.8033 | 0.7775 | 0.8310 | 0.7812 | 0.8551 | 0.8514 |
0.4844 | 3.3656 | 8000 | 0.4990 | 0.7978 | 0.7869 | 0.8091 | 0.7796 | 0.8547 | 0.8524 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.2.0
- Datasets 2.15.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support