license: mit datasets: - custom metrics: - accuracy - f1 model-index: - name: XLM-RoBERTa Base Roman Urdu + Urdu Sentiment results: - task: type: text-classification name: Sentiment Analysis dataset: name: Custom Urdu + Roman Urdu Dataset type: text metrics: - name: Validation Loss type: loss value: 0.3735 - name: Training Loss type: loss value: 0.4441

🌍 XLM-RoBERTa Base β€” Urdu + Roman Urdu Sentiment Analysis

This model is fine-tuned from xlm-roberta-base for sentiment classification in Urdu and Roman Urdu.
It predicts Positive, Negative, and Neutral sentiments.


πŸ“Š Training Details

  • Base Model: xlm-roberta-base
  • Dataset: Custom Urdu + Roman Urdu dataset
  • Classes: Positive, Negative, Neutral
  • Epochs: 3
  • Training Loss: 0.4441
  • Validation Loss (best): 0.3735

πŸš€ Usage

from transformers import pipeline

classifier = pipeline("sentiment-analysis", model="tahamueed/xlm-roberta-roman-urdu-sentiment")

print(classifier("yeh movie bohot zabardast hai!"))
# [{'label': 'Positive', 'score': 0.92}]
Downloads last month
24
Safetensors
Model size
125M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for tahamueed23/urdu-roman-urdu-sentiment

Finetuned
(3422)
this model
Quantizations
1 model