sugiv's picture
Fine-tuned EmbeddingGemma-300m on Mortgage Q&A Dataset
31cfef7 verified
---
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:2699
- loss:CachedMultipleNegativesRankingLoss
base_model: google/embeddinggemma-300m
widget:
- source_sentence: For a conventional conforming loan, what are the common down payment
amounts?
sentences:
- fannie_mae_selling_guide_chunk_001
- fannie_mae_selling_guide
- Standard down payment options for a conventional conforming loan range from 3
to 20 of the purchase price.
- source_sentence: How is the cash required for mortgage reserves confirmed by a lender?
sentences:
- freddie_mac_guide
- Lenders verify assets by requiring two months of consecutive statements for all
checking, savings, and investment accounts.
- freddie_mac_guide_chunk_017
- source_sentence: What are the different types of mortgage rate locks available to
borrowers?
sentences:
- freddie_mac_guide
- Common rate locks include a 30-day lock, a 45-day lock, and a 60-day lock, with
longer locks sometimes incurring a small fee.
- freddie_mac_guide_chunk_014
- source_sentence: How do lenders verify a borrowers assets for reserves?
sentences:
- va_chapter2_eligibility_chunk_001
- Lenders verify assets by obtaining the two most recent monthly statements for
all checking, savings, and investment accounts, ensuring the funds have been sourced
and seasoned.
- va_chapter2_eligibility
- source_sentence: When is a borrower eligible for a streamline refinance?
sentences:
- A borrower is eligible for a streamline refinance if they have made at least six
consecutive on-time payments on their current mortgage.
- fha_handbook_4000_1
- fha_handbook_4000_1_chunk_007
datasets:
- sugiv/mortgage-qa-dataset
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on google/embeddinggemma-300m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mortgage eval
type: mortgage-eval
metrics:
- type: cosine_accuracy@1
value: 0.34421364985163205
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6468842729970327
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7863501483679525
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9317507418397626
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.34421364985163205
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.21562809099901084
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1572700296735905
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09317507418397623
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.34421364985163205
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6468842729970327
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7863501483679525
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9317507418397626
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.620931422633939
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5233208515849467
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5285370057494337
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: mortgage test
type: mortgage-test
metrics:
- type: cosine_accuracy@1
value: 0.2781065088757396
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5621301775147929
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7100591715976331
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8727810650887574
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2781065088757396
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18737672583826429
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14201183431952663
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08727810650887573
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2781065088757396
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5621301775147929
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7100591715976331
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8727810650887574
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.553056381202397
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4530313703390625
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.46216201514766103
name: Cosine Map@100
---
# SentenceTransformer based on google/embeddinggemma-300m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m) on the [mortgage-qa-dataset](https://huggingface.co/datasets/sugiv/mortgage-qa-dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m) <!-- at revision 64614b0b8b64f0c6c1e52b07e4e9a4e8fe4d2da2 -->
- **Maximum Sequence Length:** 2048 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [mortgage-qa-dataset](https://huggingface.co/datasets/sugiv/mortgage-qa-dataset)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(4): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sugiv/embeddinggemma-300m-mortgage")
# Run inference
queries = [
"When is a borrower eligible for a streamline refinance?",
]
documents = [
'A borrower is eligible for a streamline refinance if they have made at least six consecutive on-time payments on their current mortgage.',
'fha_handbook_4000_1',
'fha_handbook_4000_1_chunk_007',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.8276, -0.0791, -0.0792]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `mortgage-eval` and `mortgage-test`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | mortgage-eval | mortgage-test |
|:--------------------|:--------------|:--------------|
| cosine_accuracy@1 | 0.3442 | 0.2781 |
| cosine_accuracy@3 | 0.6469 | 0.5621 |
| cosine_accuracy@5 | 0.7864 | 0.7101 |
| cosine_accuracy@10 | 0.9318 | 0.8728 |
| cosine_precision@1 | 0.3442 | 0.2781 |
| cosine_precision@3 | 0.2156 | 0.1874 |
| cosine_precision@5 | 0.1573 | 0.142 |
| cosine_precision@10 | 0.0932 | 0.0873 |
| cosine_recall@1 | 0.3442 | 0.2781 |
| cosine_recall@3 | 0.6469 | 0.5621 |
| cosine_recall@5 | 0.7864 | 0.7101 |
| cosine_recall@10 | 0.9318 | 0.8728 |
| **cosine_ndcg@10** | **0.6209** | **0.5531** |
| cosine_mrr@10 | 0.5233 | 0.453 |
| cosine_map@100 | 0.5285 | 0.4622 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### mortgage-qa-dataset
* Dataset: [mortgage-qa-dataset](https://huggingface.co/datasets/sugiv/mortgage-qa-dataset) at [de29792](https://huggingface.co/datasets/sugiv/mortgage-qa-dataset/tree/de297929404e24bbfaa5909430b0d325e76419cf)
* Size: 2,699 training samples
* Columns: <code>question</code>, <code>answer</code>, <code>source_document</code>, and <code>source_chunk</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer | source_document | source_chunk |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 16.15 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 31.67 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 9.99 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 15.99 tokens</li><li>max: 20 tokens</li></ul> |
* Samples:
| question | answer | source_document | source_chunk |
|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------|:------------------------------------------------|
| <code>When is a full appraisal required for a mortgage application?</code> | <code>A full appraisal is required for most transactions, but it can be waived for certain streamlined refinance programs if the Loan-to-Value LTV ratio is 90 or less.</code> | <code>fha_handbook_4000_1</code> | <code>fha_handbook_4000_1_chunk_005</code> |
| <code>When getting a mortgage, who orders the title insurance for the lender?</code> | <code>While often coordinated by the settlement agent, the lender typically requires and is the ultimate recipient of the lenders title insurance policy to protect their financial interest.</code> | <code>va_chapter4_underwriting</code> | <code>va_chapter4_underwriting_chunk_012</code> |
| <code>What components of a loan application does an underwriter assess?</code> | <code>Underwriters analyze the four Cs of credit: Capacity income and DTI, Capital assets and reserves, Collateral property value, and Credit credit history and score.</code> | <code>va_chapter5_processing</code> | <code>va_chapter5_processing_chunk_005</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 32,
"gather_across_devices": false
}
```
### Evaluation Dataset
#### mortgage-qa-dataset
* Dataset: [mortgage-qa-dataset](https://huggingface.co/datasets/sugiv/mortgage-qa-dataset) at [de29792](https://huggingface.co/datasets/sugiv/mortgage-qa-dataset/tree/de297929404e24bbfaa5909430b0d325e76419cf)
* Size: 337 evaluation samples
* Columns: <code>question</code>, <code>answer</code>, <code>source_document</code>, and <code>source_chunk</code>
* Approximate statistics based on the first 337 samples:
| | question | answer | source_document | source_chunk |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 16.44 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 32.28 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 10.14 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 16.14 tokens</li><li>max: 20 tokens</li></ul> |
* Samples:
| question | answer | source_document | source_chunk |
|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------|:--------------------------------------------------|
| <code>What financial metrics are crucial for an AUS to issue an approval?</code> | <code>Key AUS factors include credit score, loan-to-value ratio, debt-to-income ratio, and the overall strength and stability of the borrowers financial profile.</code> | <code>va_chapter4_underwriting</code> | <code>va_chapter4_underwriting_chunk_017</code> |
| <code>Can you explain how an LTV ratio is figured out?</code> | <code>The LTV ratio is calculated by dividing the mortgage loan amount by the appraised value or purchase price of the property, whichever is lower.</code> | <code>fannie_mae_servicing_guide</code> | <code>fannie_mae_servicing_guide_chunk_002</code> |
| <code>How do lenders verify a borrowers employment history?</code> | <code>Lenders verify employment by contacting employers directly and typically require a two-year history, which may be confirmed via recent pay stubs and W-2 forms.</code> | <code>freddie_mac_guide</code> | <code>freddie_mac_guide_chunk_002</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 32,
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 3e-06
- `num_train_epochs`: 4
- `warmup_steps`: 100
- `fp16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-06
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 100
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | mortgage-eval_cosine_ndcg@10 | mortgage-test_cosine_ndcg@10 |
|:----------:|:-------:|:-------------:|:---------------:|:----------------------------:|:----------------------------:|
| -1 | -1 | - | - | 0.5803 | - |
| 0.1479 | 25 | 0.1574 | - | - | - |
| 0.2959 | 50 | 0.1053 | 0.0722 | 0.5993 | - |
| 0.4438 | 75 | 0.0969 | - | - | - |
| 0.5917 | 100 | 0.0765 | 0.0773 | 0.6085 | - |
| 0.7396 | 125 | 0.079 | - | - | - |
| 0.8876 | 150 | 0.0802 | 0.0858 | 0.6056 | - |
| 1.0355 | 175 | 0.021 | - | - | - |
| 1.1834 | 200 | 0.0728 | 0.0549 | 0.6093 | - |
| 1.3314 | 225 | 0.0857 | - | - | - |
| 1.4793 | 250 | 0.071 | 0.0659 | 0.6145 | - |
| 1.6272 | 275 | 0.0633 | - | - | - |
| **1.7751** | **300** | **0.1844** | **0.0687** | **0.6209** | **-** |
| 1.9231 | 325 | 0.0545 | - | - | - |
| 2.0710 | 350 | 0.0474 | 0.0646 | 0.6025 | - |
| 2.2189 | 375 | 0.0702 | - | - | - |
| 2.3669 | 400 | 0.0831 | 0.0699 | 0.6026 | - |
| 2.5148 | 425 | 0.0635 | - | - | - |
| 2.6627 | 450 | 0.103 | 0.0674 | 0.6031 | - |
| 2.8107 | 475 | 0.097 | - | - | - |
| 2.9586 | 500 | 0.077 | 0.0686 | 0.6032 | - |
| 3.1065 | 525 | 0.0713 | - | - | - |
| 3.2544 | 550 | 0.1617 | 0.0668 | 0.6087 | - |
| 3.4024 | 575 | 0.1084 | - | - | - |
| 3.5503 | 600 | 0.0791 | 0.0658 | 0.6038 | - |
| 3.6982 | 625 | 0.0477 | - | - | - |
| 3.8462 | 650 | 0.0956 | 0.0659 | 0.6073 | - |
| 3.9941 | 675 | 0.0587 | - | - | - |
| -1 | -1 | - | - | 0.6209 | 0.5531 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 5.1.0
- Transformers: 4.57.0.dev0
- PyTorch: 2.8.0.dev20250319+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CachedMultipleNegativesRankingLoss
```bibtex
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->