Spaces:
Running
on
Zero
Running
on
Zero
Update README.md
#5
by
Legolas490
- opened
- README.md +1 -3
- app.py +802 -458
- constants.py +0 -585
- image_processor.py +0 -130
- requirements.txt +2 -5
- utils.py +0 -485
README.md
CHANGED
@@ -4,13 +4,11 @@ emoji: 🧩🖼️
|
|
4 |
colorFrom: red
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: mit
|
11 |
short_description: Stunning images using stable diffusion.
|
12 |
-
preload_from_hub:
|
13 |
-
- madebyollin/sdxl-vae-fp16-fix config.json,diffusion_pytorch_model.safetensors
|
14 |
---
|
15 |
|
16 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
4 |
colorFrom: red
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.1.0
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: mit
|
11 |
short_description: Stunning images using stable diffusion.
|
|
|
|
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,258 +1,517 @@
|
|
1 |
import spaces
|
2 |
import os
|
3 |
-
from stablepy import
|
4 |
-
Model_Diffusers,
|
5 |
-
SCHEDULE_TYPE_OPTIONS,
|
6 |
-
SCHEDULE_PREDICTION_TYPE_OPTIONS,
|
7 |
-
check_scheduler_compatibility,
|
8 |
-
TASK_AND_PREPROCESSORS,
|
9 |
-
FACE_RESTORATION_MODELS,
|
10 |
-
scheduler_names,
|
11 |
-
)
|
12 |
-
from constants import (
|
13 |
-
DIRECTORY_MODELS,
|
14 |
-
DIRECTORY_LORAS,
|
15 |
-
DIRECTORY_VAES,
|
16 |
-
DIRECTORY_EMBEDS,
|
17 |
-
DIRECTORY_UPSCALERS,
|
18 |
-
DOWNLOAD_MODEL,
|
19 |
-
DOWNLOAD_VAE,
|
20 |
-
DOWNLOAD_LORA,
|
21 |
-
LOAD_DIFFUSERS_FORMAT_MODEL,
|
22 |
-
DIFFUSERS_FORMAT_LORAS,
|
23 |
-
DOWNLOAD_EMBEDS,
|
24 |
-
CIVITAI_API_KEY,
|
25 |
-
HF_TOKEN,
|
26 |
-
TASK_STABLEPY,
|
27 |
-
TASK_MODEL_LIST,
|
28 |
-
UPSCALER_DICT_GUI,
|
29 |
-
UPSCALER_KEYS,
|
30 |
-
PROMPT_W_OPTIONS,
|
31 |
-
WARNING_MSG_VAE,
|
32 |
-
SDXL_TASK,
|
33 |
-
MODEL_TYPE_TASK,
|
34 |
-
POST_PROCESSING_SAMPLER,
|
35 |
-
SUBTITLE_GUI,
|
36 |
-
HELP_GUI,
|
37 |
-
EXAMPLES_GUI_HELP,
|
38 |
-
EXAMPLES_GUI,
|
39 |
-
RESOURCES,
|
40 |
-
DIFFUSERS_CONTROLNET_MODEL,
|
41 |
-
IP_MODELS,
|
42 |
-
MODE_IP_OPTIONS,
|
43 |
-
)
|
44 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
|
|
45 |
import torch
|
46 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
import time
|
48 |
from PIL import ImageFile
|
49 |
-
from utils import (
|
50 |
-
download_things,
|
51 |
-
get_model_list,
|
52 |
-
extract_parameters,
|
53 |
-
get_my_lora,
|
54 |
-
get_model_type,
|
55 |
-
extract_exif_data,
|
56 |
-
create_mask_now,
|
57 |
-
download_diffuser_repo,
|
58 |
-
get_used_storage_gb,
|
59 |
-
delete_model,
|
60 |
-
progress_step_bar,
|
61 |
-
html_template_message,
|
62 |
-
escape_html,
|
63 |
-
)
|
64 |
-
from image_processor import preprocessor_tab
|
65 |
-
from datetime import datetime
|
66 |
-
import gradio as gr
|
67 |
-
import logging
|
68 |
-
import diffusers
|
69 |
-
import warnings
|
70 |
-
from stablepy import logger
|
71 |
-
from diffusers import FluxPipeline
|
72 |
# import urllib.parse
|
73 |
-
import subprocess
|
74 |
|
75 |
-
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
|
76 |
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
77 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
78 |
-
# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
|
79 |
print(os.getenv("SPACES_ZERO_GPU"))
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
# Download stuffs
|
86 |
-
for url in [url.strip() for url in
|
87 |
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
|
88 |
-
download_things(
|
89 |
-
for url in [url.strip() for url in
|
90 |
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
|
91 |
-
download_things(
|
92 |
-
for url in [url.strip() for url in
|
93 |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
94 |
-
download_things(
|
95 |
|
96 |
# Download Embeddings
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
|
99 |
-
download_things(
|
100 |
|
101 |
# Build list models
|
102 |
-
embed_list = get_model_list(
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
single_file_model_list = get_model_list(DIRECTORY_MODELS)
|
107 |
-
model_list = LOAD_DIFFUSERS_FORMAT_MODEL + single_file_model_list
|
108 |
-
lora_model_list = get_model_list(DIRECTORY_LORAS)
|
109 |
lora_model_list.insert(0, "None")
|
110 |
lora_model_list = lora_model_list + DIFFUSERS_FORMAT_LORAS
|
111 |
-
vae_model_list = get_model_list(
|
112 |
-
vae_model_list.insert(0, "BakedVAE")
|
113 |
vae_model_list.insert(0, "None")
|
114 |
|
115 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
116 |
|
117 |
-
flux_repo = "camenduru/FLUX.1-dev-diffusers"
|
118 |
-
flux_pipe = FluxPipeline.from_pretrained(
|
119 |
-
flux_repo,
|
120 |
-
transformer=None,
|
121 |
-
torch_dtype=torch.bfloat16,
|
122 |
-
).to("cuda")
|
123 |
-
components = flux_pipe.components
|
124 |
-
delete_model(flux_repo)
|
125 |
-
# components = None
|
126 |
-
|
127 |
#######################
|
128 |
# GUI
|
129 |
#######################
|
|
|
|
|
130 |
logging.getLogger("diffusers").setLevel(logging.ERROR)
|
|
|
131 |
diffusers.utils.logging.set_verbosity(40)
|
|
|
132 |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
|
133 |
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
|
134 |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
|
|
|
|
|
135 |
logger.setLevel(logging.DEBUG)
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
CSS = """
|
138 |
.contain { display: flex; flex-direction: column; }
|
139 |
#component-0 { height: 100%; }
|
140 |
#gallery { flex-grow: 1; }
|
141 |
-
#load_model { height: 50px; }
|
142 |
"""
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
class GuiSD:
|
146 |
def __init__(self, stream=True):
|
147 |
self.model = None
|
148 |
-
self.status_loading = False
|
149 |
-
self.sleep_loading = 4
|
150 |
-
self.last_load = datetime.now()
|
151 |
-
self.inventory = []
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
m for m in self.inventory if m != model_name
|
164 |
-
] + [model_name]
|
165 |
-
print(self.inventory)
|
166 |
-
|
167 |
-
def load_new_model(self, model_name, vae_model, task, controlnet_model, progress=gr.Progress(track_tqdm=True)):
|
168 |
|
169 |
-
|
170 |
|
171 |
-
|
172 |
|
173 |
vae_model = vae_model if vae_model != "None" else None
|
174 |
model_type = get_model_type(model_name)
|
175 |
-
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
|
176 |
-
|
177 |
-
if not os.path.exists(model_name):
|
178 |
-
print("debug", model_name, vae_model, task, controlnet_model)
|
179 |
-
_ = download_diffuser_repo(
|
180 |
-
repo_name=model_name,
|
181 |
-
model_type=model_type,
|
182 |
-
revision="main",
|
183 |
-
token=True,
|
184 |
-
)
|
185 |
-
|
186 |
-
self.update_inventory(model_name)
|
187 |
-
|
188 |
-
for i in range(68):
|
189 |
-
if not self.status_loading:
|
190 |
-
self.status_loading = True
|
191 |
-
if i > 0:
|
192 |
-
time.sleep(self.sleep_loading)
|
193 |
-
print("Previous model ops...")
|
194 |
-
break
|
195 |
-
time.sleep(0.5)
|
196 |
-
print(f"Waiting queue {i}")
|
197 |
-
yield "Waiting queue"
|
198 |
-
|
199 |
-
self.status_loading = True
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
if vae_model == "BakedVAE":
|
204 |
-
vae_model = model_name
|
205 |
-
elif vae_model:
|
206 |
vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
|
207 |
if model_type != vae_type:
|
208 |
-
gr.Warning(
|
209 |
-
|
210 |
-
print("Loading model...")
|
211 |
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
if self.model is None:
|
216 |
-
self.model = Model_Diffusers(
|
217 |
-
base_model_id=model_name,
|
218 |
-
task_name=TASK_STABLEPY[task],
|
219 |
-
vae_model=vae_model,
|
220 |
-
type_model_precision=dtype_model,
|
221 |
-
retain_task_model_in_cache=False,
|
222 |
-
controlnet_model=controlnet_model,
|
223 |
-
device="cpu",
|
224 |
-
env_components=components,
|
225 |
-
)
|
226 |
-
self.model.advanced_params(image_preprocessor_cuda_active=True)
|
227 |
-
else:
|
228 |
-
if self.model.base_model_id != model_name:
|
229 |
-
load_now_time = datetime.now()
|
230 |
-
elapsed_time = max((load_now_time - self.last_load).total_seconds(), 0)
|
231 |
-
|
232 |
-
if elapsed_time <= 9:
|
233 |
-
print("Waiting for the previous model's time ops...")
|
234 |
-
time.sleep(9 - elapsed_time)
|
235 |
-
|
236 |
-
self.model.device = torch.device("cpu")
|
237 |
-
self.model.load_pipe(
|
238 |
-
model_name,
|
239 |
-
task_name=TASK_STABLEPY[task],
|
240 |
-
vae_model=vae_model,
|
241 |
-
type_model_precision=dtype_model,
|
242 |
-
retain_task_model_in_cache=False,
|
243 |
-
controlnet_model=controlnet_model,
|
244 |
-
)
|
245 |
-
|
246 |
-
end_time = time.time()
|
247 |
-
self.sleep_loading = max(min(int(end_time - start_time), 10), 4)
|
248 |
-
except Exception as e:
|
249 |
-
self.last_load = datetime.now()
|
250 |
-
self.status_loading = False
|
251 |
-
self.sleep_loading = 4
|
252 |
-
raise e
|
253 |
|
254 |
-
self.
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
yield f"Model loaded: {model_name}"
|
258 |
|
@@ -277,13 +536,7 @@ class GuiSD:
|
|
277 |
lora_scale4,
|
278 |
lora5,
|
279 |
lora_scale5,
|
280 |
-
lora6,
|
281 |
-
lora_scale6,
|
282 |
-
lora7,
|
283 |
-
lora_scale7,
|
284 |
sampler,
|
285 |
-
schedule_type,
|
286 |
-
schedule_prediction_type,
|
287 |
img_height,
|
288 |
img_width,
|
289 |
model_name,
|
@@ -301,8 +554,6 @@ class GuiSD:
|
|
301 |
high_threshold,
|
302 |
value_threshold,
|
303 |
distance_threshold,
|
304 |
-
recolor_gamma_correction,
|
305 |
-
tile_blur_sigma,
|
306 |
controlnet_output_scaling_in_unet,
|
307 |
controlnet_start_threshold,
|
308 |
controlnet_stop_threshold,
|
@@ -310,8 +561,8 @@ class GuiSD:
|
|
310 |
syntax_weights,
|
311 |
upscaler_model_path,
|
312 |
upscaler_increases_size,
|
313 |
-
|
314 |
-
|
315 |
hires_steps,
|
316 |
hires_denoising_strength,
|
317 |
hires_sampler,
|
@@ -319,16 +570,12 @@ class GuiSD:
|
|
319 |
hires_negative_prompt,
|
320 |
hires_before_adetailer,
|
321 |
hires_after_adetailer,
|
322 |
-
hires_schedule_type,
|
323 |
-
hires_guidance_scale,
|
324 |
-
controlnet_model,
|
325 |
loop_generation,
|
326 |
leave_progress_bar,
|
327 |
disable_progress_bar,
|
328 |
image_previews,
|
329 |
display_images,
|
330 |
save_generated_images,
|
331 |
-
filename_pattern,
|
332 |
image_storage_location,
|
333 |
retain_compel_previous_load,
|
334 |
retain_detailfix_model_previous_load,
|
@@ -363,7 +610,6 @@ class GuiSD:
|
|
363 |
mask_blur_b,
|
364 |
mask_padding_b,
|
365 |
retain_task_cache_gui,
|
366 |
-
guidance_rescale,
|
367 |
image_ip1,
|
368 |
mask_ip1,
|
369 |
model_ip1,
|
@@ -375,15 +621,10 @@ class GuiSD:
|
|
375 |
mode_ip2,
|
376 |
scale_ip2,
|
377 |
pag_scale,
|
378 |
-
face_restoration_model,
|
379 |
-
face_restoration_visibility,
|
380 |
-
face_restoration_weight,
|
381 |
):
|
382 |
-
info_state = html_template_message("Navigating latent space...")
|
383 |
-
yield info_state, gr.update(), gr.update()
|
384 |
|
385 |
vae_model = vae_model if vae_model != "None" else None
|
386 |
-
loras_list = [lora1, lora2, lora3, lora4, lora5
|
387 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
388 |
msg_lora = ""
|
389 |
|
@@ -402,34 +643,35 @@ class GuiSD:
|
|
402 |
(image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2),
|
403 |
]
|
404 |
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
params_ip_scale.append(scaleip)
|
414 |
|
415 |
-
concurrency =
|
416 |
-
self.model.stream_config(concurrency=concurrency, latent_resize_by=1, vae_decoding=False)
|
417 |
|
418 |
if task != "txt2img" and not image_control:
|
419 |
-
raise ValueError("
|
420 |
|
421 |
-
if task
|
422 |
-
raise ValueError("
|
423 |
|
424 |
-
if
|
425 |
upscaler_model = upscaler_model_path
|
426 |
else:
|
|
|
|
|
|
|
427 |
url_upscaler = UPSCALER_DICT_GUI[upscaler_model_path]
|
428 |
|
429 |
-
if not os.path.exists(f"./
|
430 |
-
download_things(
|
431 |
|
432 |
-
upscaler_model = f"./
|
433 |
|
434 |
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)
|
435 |
|
@@ -483,8 +725,6 @@ class GuiSD:
|
|
483 |
"high_threshold": high_threshold,
|
484 |
"value_threshold": value_threshold,
|
485 |
"distance_threshold": distance_threshold,
|
486 |
-
"recolor_gamma_correction": float(recolor_gamma_correction),
|
487 |
-
"tile_blur_sigma": int(tile_blur_sigma),
|
488 |
"lora_A": lora1 if lora1 != "None" else None,
|
489 |
"lora_scale_A": lora_scale1,
|
490 |
"lora_B": lora2 if lora2 != "None" else None,
|
@@ -495,15 +735,9 @@ class GuiSD:
|
|
495 |
"lora_scale_D": lora_scale4,
|
496 |
"lora_E": lora5 if lora5 != "None" else None,
|
497 |
"lora_scale_E": lora_scale5,
|
498 |
-
"
|
499 |
-
"lora_scale_F": lora_scale6,
|
500 |
-
"lora_G": lora7 if lora7 != "None" else None,
|
501 |
-
"lora_scale_G": lora_scale7,
|
502 |
-
"textual_inversion": embed_list if textual_inversion else [],
|
503 |
"syntax_weights": syntax_weights, # "Classic"
|
504 |
"sampler": sampler,
|
505 |
-
"schedule_type": schedule_type,
|
506 |
-
"schedule_prediction_type": schedule_prediction_type,
|
507 |
"xformers_memory_efficient_attention": xformers_memory_efficient_attention,
|
508 |
"gui_active": True,
|
509 |
"loop_generation": loop_generation,
|
@@ -521,7 +755,6 @@ class GuiSD:
|
|
521 |
"image_previews": image_previews,
|
522 |
"display_images": display_images,
|
523 |
"save_generated_images": save_generated_images,
|
524 |
-
"filename_pattern": filename_pattern,
|
525 |
"image_storage_location": image_storage_location,
|
526 |
"retain_compel_previous_load": retain_compel_previous_load,
|
527 |
"retain_detailfix_model_previous_load": retain_detailfix_model_previous_load,
|
@@ -531,8 +764,8 @@ class GuiSD:
|
|
531 |
"t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor),
|
532 |
"upscaler_model_path": upscaler_model,
|
533 |
"upscaler_increases_size": upscaler_increases_size,
|
534 |
-
"
|
535 |
-
"
|
536 |
"hires_steps": hires_steps,
|
537 |
"hires_denoising_strength": hires_denoising_strength,
|
538 |
"hires_prompt": hires_prompt,
|
@@ -540,41 +773,25 @@ class GuiSD:
|
|
540 |
"hires_sampler": hires_sampler,
|
541 |
"hires_before_adetailer": hires_before_adetailer,
|
542 |
"hires_after_adetailer": hires_after_adetailer,
|
543 |
-
"hires_schedule_type": hires_schedule_type,
|
544 |
-
"hires_guidance_scale": hires_guidance_scale,
|
545 |
"ip_adapter_image": params_ip_img,
|
546 |
"ip_adapter_mask": params_ip_msk,
|
547 |
"ip_adapter_model": params_ip_model,
|
548 |
"ip_adapter_mode": params_ip_mode,
|
549 |
"ip_adapter_scale": params_ip_scale,
|
550 |
-
"face_restoration_model": face_restoration_model,
|
551 |
-
"face_restoration_visibility": face_restoration_visibility,
|
552 |
-
"face_restoration_weight": face_restoration_weight,
|
553 |
}
|
554 |
|
555 |
-
# kwargs for diffusers pipeline
|
556 |
-
if guidance_rescale:
|
557 |
-
pipe_params["guidance_rescale"] = guidance_rescale
|
558 |
-
|
559 |
self.model.device = torch.device("cuda:0")
|
560 |
-
if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] *
|
561 |
self.model.pipe.transformer.to(self.model.device)
|
562 |
print("transformer to cuda")
|
563 |
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
info_state = progress_step_bar(actual_progress, steps)
|
568 |
-
actual_progress += concurrency
|
569 |
if image_path:
|
570 |
-
|
571 |
if vae_msg:
|
572 |
-
|
573 |
-
|
574 |
-
if "Cannot copy out of meta tensor; no data!" in self.model.last_lora_error:
|
575 |
-
msg_ram = "Unable to process the LoRAs due to high RAM usage; please try again later."
|
576 |
-
print(msg_ram)
|
577 |
-
msg_lora += f"<br>{msg_ram}"
|
578 |
|
579 |
for status, lora in zip(self.model.lora_status, self.model.lora_memory):
|
580 |
if status:
|
@@ -583,9 +800,9 @@ class GuiSD:
|
|
583 |
msg_lora += f"<br>Error with: {lora}"
|
584 |
|
585 |
if msg_lora:
|
586 |
-
|
587 |
|
588 |
-
|
589 |
|
590 |
download_links = "<br>".join(
|
591 |
[
|
@@ -594,16 +811,22 @@ class GuiSD:
|
|
594 |
]
|
595 |
)
|
596 |
if save_generated_images:
|
597 |
-
|
|
|
|
|
598 |
|
599 |
-
info_state = "COMPLETE"
|
600 |
|
601 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
602 |
|
603 |
|
604 |
def dynamic_gpu_duration(func, duration, *args):
|
605 |
|
606 |
-
# @torch.inference_mode()
|
607 |
@spaces.GPU(duration=duration)
|
608 |
def wrapped_func():
|
609 |
yield from func(*args)
|
@@ -617,44 +840,35 @@ def dummy_gpu():
|
|
617 |
|
618 |
|
619 |
def sd_gen_generate_pipeline(*args):
|
|
|
620 |
gpu_duration_arg = int(args[-1]) if args[-1] else 59
|
621 |
verbose_arg = int(args[-2])
|
622 |
load_lora_cpu = args[-3]
|
623 |
generation_args = args[:-3]
|
624 |
lora_list = [
|
625 |
None if item == "None" else item
|
626 |
-
for item in [args[7], args[9], args[11], args[13], args[15]
|
627 |
]
|
628 |
-
lora_status = [None] *
|
629 |
|
630 |
msg_load_lora = "Updating LoRAs in GPU..."
|
631 |
if load_lora_cpu:
|
632 |
-
msg_load_lora = "Updating LoRAs in CPU..."
|
633 |
|
634 |
-
if lora_list != sd_gen.model.lora_memory and lora_list != [None] *
|
635 |
-
yield
|
636 |
|
637 |
# Load lora in CPU
|
638 |
if load_lora_cpu:
|
639 |
-
lora_status = sd_gen.model.
|
640 |
lora_A=lora_list[0], lora_scale_A=args[8],
|
641 |
lora_B=lora_list[1], lora_scale_B=args[10],
|
642 |
lora_C=lora_list[2], lora_scale_C=args[12],
|
643 |
lora_D=lora_list[3], lora_scale_D=args[14],
|
644 |
lora_E=lora_list[4], lora_scale_E=args[16],
|
645 |
-
lora_F=lora_list[5], lora_scale_F=args[18],
|
646 |
-
lora_G=lora_list[6], lora_scale_G=args[20],
|
647 |
)
|
648 |
print(lora_status)
|
649 |
|
650 |
-
sampler_name = args[21]
|
651 |
-
schedule_type_name = args[22]
|
652 |
-
_, _, msg_sampler = check_scheduler_compatibility(
|
653 |
-
sd_gen.model.class_name, sampler_name, schedule_type_name
|
654 |
-
)
|
655 |
-
if msg_sampler:
|
656 |
-
gr.Warning(msg_sampler)
|
657 |
-
|
658 |
if verbose_arg:
|
659 |
for status, lora in zip(lora_status, lora_list):
|
660 |
if status:
|
@@ -662,21 +876,20 @@ def sd_gen_generate_pipeline(*args):
|
|
662 |
elif status is not None:
|
663 |
gr.Warning(f"Failed to load LoRA: {lora}")
|
664 |
|
665 |
-
if lora_status == [None] *
|
666 |
lora_cache_msg = ", ".join(
|
667 |
str(x) for x in sd_gen.model.lora_memory if x is not None
|
668 |
)
|
669 |
gr.Info(f"LoRAs in cache: {lora_cache_msg}")
|
670 |
|
671 |
-
|
672 |
-
if verbose_arg:
|
673 |
gr.Info(msg_request)
|
674 |
print(msg_request)
|
675 |
-
|
|
|
676 |
|
677 |
start_time = time.time()
|
678 |
|
679 |
-
# yield from sd_gen.generate_pipeline(*generation_args)
|
680 |
yield from dynamic_gpu_duration(
|
681 |
sd_gen.generate_pipeline,
|
682 |
gpu_duration_arg,
|
@@ -684,46 +897,55 @@ def sd_gen_generate_pipeline(*args):
|
|
684 |
)
|
685 |
|
686 |
end_time = time.time()
|
687 |
-
execution_time = end_time - start_time
|
688 |
-
msg_task_complete = (
|
689 |
-
f"GPU task complete in: {int(round(execution_time, 0) + 1)} seconds"
|
690 |
-
)
|
691 |
|
692 |
if verbose_arg:
|
|
|
|
|
|
|
|
|
693 |
gr.Info(msg_task_complete)
|
694 |
print(msg_task_complete)
|
695 |
|
696 |
-
yield msg_task_complete, gr.update(), gr.update()
|
697 |
|
|
|
|
|
698 |
|
699 |
-
|
700 |
-
|
701 |
-
if image is None: return None
|
702 |
|
703 |
-
|
704 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
705 |
|
706 |
-
image = image.convert("RGB")
|
707 |
-
exif_image = extract_exif_data(image)
|
708 |
|
709 |
-
|
|
|
|
|
710 |
|
711 |
-
|
|
|
712 |
|
713 |
-
|
714 |
-
download_things(DIRECTORY_UPSCALERS, name_upscaler, HF_TOKEN)
|
715 |
|
716 |
-
|
|
|
|
|
|
|
|
|
717 |
|
718 |
-
scaler_beta =
|
719 |
-
image_up = scaler_beta.upscale(image, upscaler_size,
|
720 |
|
721 |
image_path = save_pil_image_with_metadata(image_up, f'{os.getcwd()}/up_images', exif_image)
|
722 |
|
723 |
return image_path
|
724 |
|
725 |
|
726 |
-
# https://huggingface.co/spaces/BestWishYsh/ConsisID-preview-Space/discussions/1#674969a022b99c122af5d407
|
727 |
dynamic_gpu_duration.zerogpu = True
|
728 |
sd_gen_generate_pipeline.zerogpu = True
|
729 |
sd_gen = GuiSD()
|
@@ -736,18 +958,10 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
736 |
|
737 |
with gr.Column(scale=2):
|
738 |
|
739 |
-
def update_task_options(model_name, task_name):
|
740 |
-
new_choices = MODEL_TYPE_TASK[get_model_type(model_name)]
|
741 |
-
|
742 |
-
if task_name not in new_choices:
|
743 |
-
task_name = "txt2img"
|
744 |
-
|
745 |
-
return gr.update(value=task_name, choices=new_choices)
|
746 |
-
|
747 |
task_gui = gr.Dropdown(label="Task", choices=SDXL_TASK, value=TASK_MODEL_LIST[0])
|
748 |
model_name_gui = gr.Dropdown(label="Model", choices=model_list, value=model_list[0], allow_custom_value=True)
|
749 |
prompt_gui = gr.Textbox(lines=5, placeholder="Enter prompt", label="Prompt")
|
750 |
-
neg_prompt_gui = gr.Textbox(lines=3, placeholder="Enter Neg prompt", label="Negative prompt"
|
751 |
with gr.Row(equal_height=False):
|
752 |
set_params_gui = gr.Button(value="↙️", variant="secondary", size="sm")
|
753 |
clear_prompt_gui = gr.Button(value="🗑️", variant="secondary", size="sm")
|
@@ -760,7 +974,7 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
760 |
[task_gui],
|
761 |
)
|
762 |
|
763 |
-
load_model_gui = gr.HTML(
|
764 |
|
765 |
result_images = gr.Gallery(
|
766 |
label="Generated images",
|
@@ -781,13 +995,12 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
781 |
gpu_duration_gui = gr.Number(minimum=5, maximum=240, value=59, show_label=False, container=False, info="GPU time duration (seconds)")
|
782 |
with gr.Column():
|
783 |
verbose_info_gui = gr.Checkbox(value=False, container=False, label="Status info")
|
784 |
-
load_lora_cpu_gui = gr.Checkbox(value=False, container=False, label="Load LoRAs on CPU")
|
785 |
|
786 |
with gr.Column(scale=1):
|
787 |
-
steps_gui = gr.Slider(minimum=1, maximum=100, step=1, value=
|
788 |
cfg_gui = gr.Slider(minimum=0, maximum=30, step=0.5, value=7., label="CFG")
|
789 |
-
sampler_gui = gr.Dropdown(label="Sampler", choices=scheduler_names, value="Euler")
|
790 |
-
schedule_type_gui = gr.Dropdown(label="Schedule type", choices=SCHEDULE_TYPE_OPTIONS, value=SCHEDULE_TYPE_OPTIONS[0])
|
791 |
img_width_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Width")
|
792 |
img_height_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Height")
|
793 |
seed_gui = gr.Number(minimum=-1, maximum=9999999999, value=-1, label="Seed")
|
@@ -806,26 +1019,14 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
806 |
"width": gr.update(value=1024),
|
807 |
"height": gr.update(value=1024),
|
808 |
"Seed": gr.update(value=-1),
|
809 |
-
"Sampler": gr.update(value="Euler"),
|
810 |
-
"
|
811 |
-
"
|
812 |
"Model": gr.update(value=name_model),
|
813 |
-
"Schedule type": gr.update(value="Automatic"),
|
814 |
-
"PAG": gr.update(value=.0),
|
815 |
-
"FreeU": gr.update(value=False),
|
816 |
}
|
817 |
valid_keys = list(valid_receptors.keys())
|
818 |
|
819 |
parameters = extract_parameters(base_prompt)
|
820 |
-
# print(parameters)
|
821 |
-
|
822 |
-
if "Sampler" in parameters:
|
823 |
-
value_sampler = parameters["Sampler"]
|
824 |
-
for s_type in SCHEDULE_TYPE_OPTIONS:
|
825 |
-
if s_type in value_sampler:
|
826 |
-
value_sampler = value_sampler.replace(s_type, "").strip()
|
827 |
-
parameters["Sampler"] = value_sampler
|
828 |
-
parameters["Schedule type"] = s_type
|
829 |
|
830 |
for key, val in parameters.items():
|
831 |
# print(val)
|
@@ -834,10 +1035,7 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
834 |
if key == "Sampler":
|
835 |
if val not in scheduler_names:
|
836 |
continue
|
837 |
-
|
838 |
-
if val not in SCHEDULE_TYPE_OPTIONS:
|
839 |
-
val = "Automatic"
|
840 |
-
elif key == "Clip skip":
|
841 |
if "," in str(val):
|
842 |
val = val.replace(",", "")
|
843 |
if int(val) >= 2:
|
@@ -850,9 +1048,7 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
850 |
val = re.sub(r'\s+', ' ', re.sub(r',+', ',', val)).strip()
|
851 |
if key in ["Steps", "width", "height", "Seed"]:
|
852 |
val = int(val)
|
853 |
-
if key == "
|
854 |
-
val = True
|
855 |
-
if key in ["CFG scale", "PAG"]:
|
856 |
val = float(val)
|
857 |
if key == "Model":
|
858 |
filtered_models = [m for m in model_list if val in m]
|
@@ -881,9 +1077,6 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
881 |
cfg_gui,
|
882 |
clip_skip_gui,
|
883 |
model_name_gui,
|
884 |
-
schedule_type_gui,
|
885 |
-
pag_scale_gui,
|
886 |
-
free_u_gui,
|
887 |
],
|
888 |
)
|
889 |
|
@@ -900,31 +1093,36 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
900 |
)
|
901 |
|
902 |
num_images_gui = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Images")
|
903 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
904 |
vae_model_gui = gr.Dropdown(label="VAE Model", choices=vae_model_list, value=vae_model_list[0])
|
905 |
|
906 |
with gr.Accordion("Hires fix", open=False, visible=True):
|
907 |
|
908 |
upscaler_model_path_gui = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0])
|
909 |
upscaler_increases_size_gui = gr.Slider(minimum=1.1, maximum=4., step=0.1, value=1.2, label="Upscale by")
|
910 |
-
|
911 |
-
|
912 |
hires_steps_gui = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps")
|
913 |
hires_denoising_strength_gui = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength")
|
914 |
hires_sampler_gui = gr.Dropdown(label="Hires Sampler", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])
|
915 |
-
hires_schedule_list = ["Use same schedule type"] + SCHEDULE_TYPE_OPTIONS
|
916 |
-
hires_schedule_type_gui = gr.Dropdown(label="Hires Schedule type", choices=hires_schedule_list, value=hires_schedule_list[0])
|
917 |
-
hires_guidance_scale_gui = gr.Slider(minimum=-1., maximum=30., step=0.5, value=-1., label="Hires CFG", info="If the value is -1, the main CFG will be used")
|
918 |
hires_prompt_gui = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3)
|
919 |
hires_negative_prompt_gui = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3)
|
920 |
|
921 |
with gr.Accordion("LoRA", open=False, visible=True):
|
922 |
|
923 |
-
def lora_dropdown(label
|
924 |
-
return gr.Dropdown(label=label, choices=lora_model_list, value="None", allow_custom_value=True
|
925 |
|
926 |
-
def lora_scale_slider(label
|
927 |
-
return gr.Slider(minimum=-2, maximum=2, step=0.01, value=0.33, label=label
|
928 |
|
929 |
lora1_gui = lora_dropdown("Lora1")
|
930 |
lora_scale_1_gui = lora_scale_slider("Lora Scale 1")
|
@@ -936,37 +1134,21 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
936 |
lora_scale_4_gui = lora_scale_slider("Lora Scale 4")
|
937 |
lora5_gui = lora_dropdown("Lora5")
|
938 |
lora_scale_5_gui = lora_scale_slider("Lora Scale 5")
|
939 |
-
lora6_gui = lora_dropdown("Lora6", visible=False)
|
940 |
-
lora_scale_6_gui = lora_scale_slider("Lora Scale 6", visible=False)
|
941 |
-
lora7_gui = lora_dropdown("Lora7", visible=False)
|
942 |
-
lora_scale_7_gui = lora_scale_slider("Lora Scale 7", visible=False)
|
943 |
|
944 |
with gr.Accordion("From URL", open=False, visible=True):
|
945 |
-
text_lora = gr.Textbox(
|
946 |
-
|
947 |
-
placeholder="https://civitai.com/api/download/models/28907",
|
948 |
-
lines=1,
|
949 |
-
info="It has to be .safetensors files, and you can also download them from Hugging Face.",
|
950 |
-
)
|
951 |
-
romanize_text = gr.Checkbox(value=False, label="Transliterate name", visible=False)
|
952 |
-
button_lora = gr.Button("Get and Refresh the LoRA Lists")
|
953 |
-
new_lora_status = gr.HTML()
|
954 |
button_lora.click(
|
955 |
get_my_lora,
|
956 |
-
[text_lora
|
957 |
-
[lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui
|
958 |
)
|
959 |
|
960 |
-
with gr.Accordion("Face restoration", open=False, visible=True):
|
961 |
-
|
962 |
-
face_rest_options = [None] + FACE_RESTORATION_MODELS
|
963 |
-
|
964 |
-
face_restoration_model_gui = gr.Dropdown(label="Face restoration model", choices=face_rest_options, value=face_rest_options[0])
|
965 |
-
face_restoration_visibility_gui = gr.Slider(minimum=0., maximum=1., step=0.001, value=1., label="Visibility")
|
966 |
-
face_restoration_weight_gui = gr.Slider(minimum=0., maximum=1., step=0.001, value=.5, label="Weight", info="(0 = maximum effect, 1 = minimum effect)")
|
967 |
-
|
968 |
with gr.Accordion("IP-Adapter", open=False, visible=True):
|
969 |
|
|
|
|
|
|
|
970 |
with gr.Accordion("IP-Adapter 1", open=False, visible=True):
|
971 |
image_ip1 = gr.Image(label="IP Image", type="filepath")
|
972 |
mask_ip1 = gr.Image(label="IP Mask", type="filepath")
|
@@ -985,38 +1167,32 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
985 |
image_mask_gui = gr.Image(label="Image Mask", type="filepath")
|
986 |
strength_gui = gr.Slider(
|
987 |
minimum=0.01, maximum=1.0, step=0.01, value=0.55, label="Strength",
|
988 |
-
info="This option adjusts the level of changes for img2img
|
989 |
)
|
990 |
-
image_resolution_gui = gr.Slider(
|
991 |
-
|
992 |
-
info="The maximum proportional size of the generated image based on the uploaded image."
|
993 |
-
)
|
994 |
-
controlnet_model_gui = gr.Dropdown(label="ControlNet model", choices=DIFFUSERS_CONTROLNET_MODEL, value=DIFFUSERS_CONTROLNET_MODEL[0], allow_custom_value=True)
|
995 |
-
control_net_output_scaling_gui = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet")
|
996 |
-
control_net_start_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)")
|
997 |
-
control_net_stop_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)")
|
998 |
-
preprocessor_name_gui = gr.Dropdown(label="Preprocessor Name", choices=TASK_AND_PREPROCESSORS["canny"])
|
999 |
|
1000 |
def change_preprocessor_choices(task):
|
1001 |
task = TASK_STABLEPY[task]
|
1002 |
-
if task in
|
1003 |
-
choices_task =
|
1004 |
else:
|
1005 |
-
choices_task =
|
1006 |
return gr.update(choices=choices_task, value=choices_task[0])
|
|
|
1007 |
task_gui.change(
|
1008 |
change_preprocessor_choices,
|
1009 |
[task_gui],
|
1010 |
[preprocessor_name_gui],
|
1011 |
)
|
1012 |
-
|
1013 |
-
|
1014 |
-
|
1015 |
-
|
1016 |
-
|
1017 |
-
|
1018 |
-
|
1019 |
-
|
1020 |
|
1021 |
with gr.Accordion("T2I adapter", open=False, visible=False):
|
1022 |
t2i_adapter_preprocessor_gui = gr.Checkbox(value=True, label="T2i Adapter Preprocessor")
|
@@ -1072,7 +1248,7 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
1072 |
negative_prompt_ad_a_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
|
1073 |
strength_ad_a_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
|
1074 |
face_detector_ad_a_gui = gr.Checkbox(label="Face detector", value=True)
|
1075 |
-
person_detector_ad_a_gui = gr.Checkbox(label="Person detector", value=
|
1076 |
hand_detector_ad_a_gui = gr.Checkbox(label="Hand detector", value=False)
|
1077 |
mask_dilation_a_gui = gr.Number(label="Mask dilation:", value=4, minimum=1)
|
1078 |
mask_blur_a_gui = gr.Number(label="Mask blur:", value=4, minimum=1)
|
@@ -1084,7 +1260,7 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
1084 |
prompt_ad_b_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3)
|
1085 |
negative_prompt_ad_b_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
|
1086 |
strength_ad_b_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
|
1087 |
-
face_detector_ad_b_gui = gr.Checkbox(label="Face detector", value=
|
1088 |
person_detector_ad_b_gui = gr.Checkbox(label="Person detector", value=True)
|
1089 |
hand_detector_ad_b_gui = gr.Checkbox(label="Hand detector", value=False)
|
1090 |
mask_dilation_b_gui = gr.Number(label="Mask dilation:", value=4, minimum=1)
|
@@ -1092,10 +1268,7 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
1092 |
mask_padding_b_gui = gr.Number(label="Mask padding:", value=32, minimum=1)
|
1093 |
|
1094 |
with gr.Accordion("Other settings", open=False, visible=True):
|
1095 |
-
schedule_prediction_type_gui = gr.Dropdown(label="Discrete Sampling Type", choices=SCHEDULE_PREDICTION_TYPE_OPTIONS, value=SCHEDULE_PREDICTION_TYPE_OPTIONS[0])
|
1096 |
-
guidance_rescale_gui = gr.Number(label="CFG rescale:", value=0., step=0.01, minimum=0., maximum=1.5)
|
1097 |
save_generated_images_gui = gr.Checkbox(value=True, label="Create a download link for the images")
|
1098 |
-
filename_pattern_gui = gr.Textbox(label="Filename pattern", value="model,seed", placeholder="model,seed,sampler,schedule_type,img_width,img_height,guidance_scale,num_steps,vae,prompt_section,neg_prompt_section", lines=1)
|
1099 |
hires_before_adetailer_gui = gr.Checkbox(value=False, label="Hires Before Adetailer")
|
1100 |
hires_after_adetailer_gui = gr.Checkbox(value=True, label="Hires After Adetailer")
|
1101 |
generator_in_cpu_gui = gr.Checkbox(value=False, label="Generator in CPU")
|
@@ -1105,7 +1278,7 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
1105 |
retain_task_cache_gui = gr.Checkbox(value=False, label="Retain task model in cache")
|
1106 |
leave_progress_bar_gui = gr.Checkbox(value=True, label="Leave Progress Bar")
|
1107 |
disable_progress_bar_gui = gr.Checkbox(value=False, label="Disable Progress Bar")
|
1108 |
-
display_images_gui = gr.Checkbox(value=
|
1109 |
image_previews_gui = gr.Checkbox(value=True, label="Image Previews")
|
1110 |
image_storage_location_gui = gr.Textbox(value="./images", label="Image Storage Location")
|
1111 |
retain_compel_previous_load_gui = gr.Checkbox(value=False, label="Retain Compel Previous Load")
|
@@ -1114,10 +1287,172 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
1114 |
xformers_memory_efficient_attention_gui = gr.Checkbox(value=False, label="Xformers Memory Efficient Attention")
|
1115 |
|
1116 |
with gr.Accordion("Examples and help", open=False, visible=True):
|
1117 |
-
gr.Markdown(
|
1118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1119 |
gr.Examples(
|
1120 |
-
examples=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1121 |
fn=sd_gen.generate_pipeline,
|
1122 |
inputs=[
|
1123 |
prompt_gui,
|
@@ -1143,13 +1478,45 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
1143 |
gpu_duration_gui,
|
1144 |
load_lora_cpu_gui,
|
1145 |
],
|
1146 |
-
outputs=[
|
1147 |
cache_examples=False,
|
1148 |
)
|
1149 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
1150 |
|
1151 |
with gr.Tab("Inpaint mask maker", render=True):
|
1152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1153 |
with gr.Row():
|
1154 |
with gr.Column(scale=2):
|
1155 |
image_base = gr.ImageEditor(
|
@@ -1158,15 +1525,15 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
1158 |
# enable crop (or disable it)
|
1159 |
# transforms=["crop"],
|
1160 |
brush=gr.Brush(
|
1161 |
-
|
1162 |
-
|
1163 |
-
|
1164 |
-
|
1165 |
-
|
1166 |
-
|
1167 |
-
|
1168 |
-
|
1169 |
-
|
1170 |
),
|
1171 |
eraser=gr.Eraser(default_size="16")
|
1172 |
)
|
@@ -1202,11 +1569,8 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
1202 |
|
1203 |
with gr.Row():
|
1204 |
with gr.Column():
|
1205 |
-
|
1206 |
-
USCALER_TAB_KEYS = [name for name in UPSCALER_KEYS[9:]]
|
1207 |
-
|
1208 |
image_up_tab = gr.Image(label="Image", type="pil", sources=["upload"])
|
1209 |
-
upscaler_tab = gr.Dropdown(label="Upscaler", choices=
|
1210 |
upscaler_size_tab = gr.Slider(minimum=1., maximum=4., step=0.1, value=1.1, label="Upscale by")
|
1211 |
generate_button_up_tab = gr.Button(value="START UPSCALE", variant="primary")
|
1212 |
|
@@ -1214,21 +1578,17 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
1214 |
result_up_tab = gr.Image(label="Result", type="pil", interactive=False, format="png")
|
1215 |
|
1216 |
generate_button_up_tab.click(
|
1217 |
-
fn=
|
1218 |
inputs=[image_up_tab, upscaler_tab, upscaler_size_tab],
|
1219 |
outputs=[result_up_tab],
|
1220 |
)
|
1221 |
|
1222 |
-
with gr.Tab("Preprocessor", render=True):
|
1223 |
-
preprocessor_tab()
|
1224 |
-
|
1225 |
generate_button.click(
|
1226 |
fn=sd_gen.load_new_model,
|
1227 |
inputs=[
|
1228 |
model_name_gui,
|
1229 |
vae_model_gui,
|
1230 |
-
task_gui
|
1231 |
-
controlnet_model_gui,
|
1232 |
],
|
1233 |
outputs=[load_model_gui],
|
1234 |
queue=True,
|
@@ -1253,13 +1613,7 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
1253 |
lora_scale_4_gui,
|
1254 |
lora5_gui,
|
1255 |
lora_scale_5_gui,
|
1256 |
-
lora6_gui,
|
1257 |
-
lora_scale_6_gui,
|
1258 |
-
lora7_gui,
|
1259 |
-
lora_scale_7_gui,
|
1260 |
sampler_gui,
|
1261 |
-
schedule_type_gui,
|
1262 |
-
schedule_prediction_type_gui,
|
1263 |
img_height_gui,
|
1264 |
img_width_gui,
|
1265 |
model_name_gui,
|
@@ -1277,8 +1631,6 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
1277 |
high_threshold_gui,
|
1278 |
value_threshold_gui,
|
1279 |
distance_threshold_gui,
|
1280 |
-
recolor_gamma_correction_gui,
|
1281 |
-
tile_blur_sigma_gui,
|
1282 |
control_net_output_scaling_gui,
|
1283 |
control_net_start_threshold_gui,
|
1284 |
control_net_stop_threshold_gui,
|
@@ -1286,8 +1638,8 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
1286 |
prompt_syntax_gui,
|
1287 |
upscaler_model_path_gui,
|
1288 |
upscaler_increases_size_gui,
|
1289 |
-
|
1290 |
-
|
1291 |
hires_steps_gui,
|
1292 |
hires_denoising_strength_gui,
|
1293 |
hires_sampler_gui,
|
@@ -1295,16 +1647,12 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
1295 |
hires_negative_prompt_gui,
|
1296 |
hires_before_adetailer_gui,
|
1297 |
hires_after_adetailer_gui,
|
1298 |
-
hires_schedule_type_gui,
|
1299 |
-
hires_guidance_scale_gui,
|
1300 |
-
controlnet_model_gui,
|
1301 |
loop_generation_gui,
|
1302 |
leave_progress_bar_gui,
|
1303 |
disable_progress_bar_gui,
|
1304 |
image_previews_gui,
|
1305 |
display_images_gui,
|
1306 |
save_generated_images_gui,
|
1307 |
-
filename_pattern_gui,
|
1308 |
image_storage_location_gui,
|
1309 |
retain_compel_previous_load_gui,
|
1310 |
retain_detailfix_model_previous_load_gui,
|
@@ -1339,7 +1687,6 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
1339 |
mask_blur_b_gui,
|
1340 |
mask_padding_b_gui,
|
1341 |
retain_task_cache_gui,
|
1342 |
-
guidance_rescale_gui,
|
1343 |
image_ip1,
|
1344 |
mask_ip1,
|
1345 |
model_ip1,
|
@@ -1351,14 +1698,11 @@ with gr.Blocks(theme="NoCrypt/miku", css=CSS) as app:
|
|
1351 |
mode_ip2,
|
1352 |
scale_ip2,
|
1353 |
pag_scale_gui,
|
1354 |
-
face_restoration_model_gui,
|
1355 |
-
face_restoration_visibility_gui,
|
1356 |
-
face_restoration_weight_gui,
|
1357 |
load_lora_cpu_gui,
|
1358 |
verbose_info_gui,
|
1359 |
gpu_duration_gui,
|
1360 |
],
|
1361 |
-
outputs=[
|
1362 |
queue=True,
|
1363 |
show_progress="minimal",
|
1364 |
)
|
|
|
1 |
import spaces
|
2 |
import os
|
3 |
+
from stablepy import Model_Diffusers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
5 |
+
from stablepy.diffusers_vanilla.constants import FLUX_CN_UNION_MODES
|
6 |
import torch
|
7 |
import re
|
8 |
+
from huggingface_hub import HfApi
|
9 |
+
from stablepy import (
|
10 |
+
CONTROLNET_MODEL_IDS,
|
11 |
+
VALID_TASKS,
|
12 |
+
T2I_PREPROCESSOR_NAME,
|
13 |
+
FLASH_LORA,
|
14 |
+
SCHEDULER_CONFIG_MAP,
|
15 |
+
scheduler_names,
|
16 |
+
IP_ADAPTER_MODELS,
|
17 |
+
IP_ADAPTERS_SD,
|
18 |
+
IP_ADAPTERS_SDXL,
|
19 |
+
REPO_IMAGE_ENCODER,
|
20 |
+
ALL_PROMPT_WEIGHT_OPTIONS,
|
21 |
+
SD15_TASKS,
|
22 |
+
SDXL_TASKS,
|
23 |
+
)
|
24 |
import time
|
25 |
from PIL import ImageFile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# import urllib.parse
|
|
|
27 |
|
|
|
28 |
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
|
|
|
|
29 |
print(os.getenv("SPACES_ZERO_GPU"))
|
30 |
|
31 |
+
# - **Download SD 1.5 Models**
|
32 |
+
download_model = "https://civitai.com/api/download/models/574369, https://huggingface.co/TechnoByte/MilkyWonderland/resolve/main/milkyWonderland_v40.safetensors"
|
33 |
+
# - **Download VAEs**
|
34 |
+
download_vae = "https://huggingface.co/nubby/blessed-sdxl-vae-fp16-fix/resolve/main/sdxl_vae-fp16fix-c-1.1-b-0.5.safetensors?download=true, https://huggingface.co/nubby/blessed-sdxl-vae-fp16-fix/resolve/main/sdxl_vae-fp16fix-blessed.safetensors?download=true, https://huggingface.co/digiplay/VAE/resolve/main/vividReal_v20.safetensors?download=true, https://huggingface.co/fp16-guy/anything_kl-f8-anime2_vae-ft-mse-840000-ema-pruned_blessed_clearvae_fp16_cleaned/resolve/main/vae-ft-mse-840000-ema-pruned_fp16.safetensors?download=true"
|
35 |
+
# - **Download LoRAs**
|
36 |
+
download_lora = "https://civitai.com/api/download/models/28907, https://huggingface.co/Leopain/color/resolve/main/Coloring_book_-_LineArt.safetensors, https://civitai.com/api/download/models/135867, https://civitai.com/api/download/models/145907, https://huggingface.co/Linaqruf/anime-detailer-xl-lora/resolve/main/anime-detailer-xl.safetensors?download=true, https://huggingface.co/Linaqruf/style-enhancer-xl-lora/resolve/main/style-enhancer-xl.safetensors?download=true, https://civitai.com/api/download/models/28609, https://huggingface.co/ByteDance/Hyper-SD/resolve/main/Hyper-SD15-8steps-CFG-lora.safetensors?download=true, https://huggingface.co/ByteDance/Hyper-SD/resolve/main/Hyper-SDXL-8steps-CFG-lora.safetensors?download=true"
|
37 |
+
load_diffusers_format_model = [
|
38 |
+
'stabilityai/stable-diffusion-xl-base-1.0',
|
39 |
+
'black-forest-labs/FLUX.1-dev',
|
40 |
+
'John6666/blue-pencil-flux1-v021-fp8-flux',
|
41 |
+
'John6666/wai-ani-flux-v10forfp8-fp8-flux',
|
42 |
+
'John6666/xe-anime-flux-v04-fp8-flux',
|
43 |
+
'John6666/lyh-anime-flux-v2a1-fp8-flux',
|
44 |
+
'John6666/carnival-unchained-v10-fp8-flux',
|
45 |
+
'cagliostrolab/animagine-xl-3.1',
|
46 |
+
'John6666/epicrealism-xl-v8kiss-sdxl',
|
47 |
+
'misri/epicrealismXL_v7FinalDestination',
|
48 |
+
'misri/juggernautXL_juggernautX',
|
49 |
+
'misri/zavychromaxl_v80',
|
50 |
+
'SG161222/RealVisXL_V4.0',
|
51 |
+
'SG161222/RealVisXL_V5.0',
|
52 |
+
'misri/newrealityxlAllInOne_Newreality40',
|
53 |
+
'eienmojiki/Anything-XL',
|
54 |
+
'eienmojiki/Starry-XL-v5.2',
|
55 |
+
'gsdf/CounterfeitXL',
|
56 |
+
'KBlueLeaf/Kohaku-XL-Zeta',
|
57 |
+
'John6666/silvermoon-mix-01xl-v11-sdxl',
|
58 |
+
'WhiteAiZ/autismmixSDXL_autismmixConfetti_diffusers',
|
59 |
+
'kitty7779/ponyDiffusionV6XL',
|
60 |
+
'GraydientPlatformAPI/aniverse-pony',
|
61 |
+
'John6666/ras-real-anime-screencap-v1-sdxl',
|
62 |
+
'John6666/duchaiten-pony-xl-no-score-v60-sdxl',
|
63 |
+
'John6666/mistoon-anime-ponyalpha-sdxl',
|
64 |
+
'John6666/3x3x3mixxl-v2-sdxl',
|
65 |
+
'John6666/3x3x3mixxl-3dv01-sdxl',
|
66 |
+
'John6666/ebara-mfcg-pony-mix-v12-sdxl',
|
67 |
+
'John6666/t-ponynai3-v51-sdxl',
|
68 |
+
'John6666/t-ponynai3-v65-sdxl',
|
69 |
+
'John6666/prefect-pony-xl-v3-sdxl',
|
70 |
+
'John6666/mala-anime-mix-nsfw-pony-xl-v5-sdxl',
|
71 |
+
'John6666/wai-real-mix-v11-sdxl',
|
72 |
+
'John6666/wai-c-v6-sdxl',
|
73 |
+
'John6666/iniverse-mix-xl-sfwnsfw-pony-guofeng-v43-sdxl',
|
74 |
+
'John6666/photo-realistic-pony-v5-sdxl',
|
75 |
+
'John6666/pony-realism-v21main-sdxl',
|
76 |
+
'John6666/pony-realism-v22main-sdxl',
|
77 |
+
'John6666/cyberrealistic-pony-v63-sdxl',
|
78 |
+
'John6666/cyberrealistic-pony-v64-sdxl',
|
79 |
+
'GraydientPlatformAPI/realcartoon-pony-diffusion',
|
80 |
+
'John6666/nova-anime-xl-pony-v5-sdxl',
|
81 |
+
'John6666/autismmix-sdxl-autismmix-pony-sdxl',
|
82 |
+
'John6666/aimz-dream-real-pony-mix-v3-sdxl',
|
83 |
+
'John6666/duchaiten-pony-real-v11fix-sdxl',
|
84 |
+
'John6666/duchaiten-pony-real-v20-sdxl',
|
85 |
+
'yodayo-ai/kivotos-xl-2.0',
|
86 |
+
'yodayo-ai/holodayo-xl-2.1',
|
87 |
+
'yodayo-ai/clandestine-xl-1.0',
|
88 |
+
'digiplay/majicMIX_sombre_v2',
|
89 |
+
'digiplay/majicMIX_realistic_v6',
|
90 |
+
'digiplay/majicMIX_realistic_v7',
|
91 |
+
'digiplay/DreamShaper_8',
|
92 |
+
'digiplay/BeautifulArt_v1',
|
93 |
+
'digiplay/DarkSushi2.5D_v1',
|
94 |
+
'digiplay/darkphoenix3D_v1.1',
|
95 |
+
'digiplay/BeenYouLiteL11_diffusers',
|
96 |
+
'Yntec/RevAnimatedV2Rebirth',
|
97 |
+
'youknownothing/cyberrealistic_v50',
|
98 |
+
'youknownothing/deliberate-v6',
|
99 |
+
'GraydientPlatformAPI/deliberate-cyber3',
|
100 |
+
'GraydientPlatformAPI/picx-real',
|
101 |
+
'GraydientPlatformAPI/perfectworld6',
|
102 |
+
'emilianJR/epiCRealism',
|
103 |
+
'votepurchase/counterfeitV30_v30',
|
104 |
+
'votepurchase/ChilloutMix',
|
105 |
+
'Meina/MeinaMix_V11',
|
106 |
+
'Meina/MeinaUnreal_V5',
|
107 |
+
'Meina/MeinaPastel_V7',
|
108 |
+
'GraydientPlatformAPI/realcartoon3d-17',
|
109 |
+
'GraydientPlatformAPI/realcartoon-pixar11',
|
110 |
+
'GraydientPlatformAPI/realcartoon-real17',
|
111 |
+
]
|
112 |
+
|
113 |
+
DIFFUSERS_FORMAT_LORAS = [
|
114 |
+
"nerijs/animation2k-flux",
|
115 |
+
"XLabs-AI/flux-RealismLora",
|
116 |
+
]
|
117 |
+
|
118 |
+
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
|
119 |
+
HF_TOKEN = os.environ.get("HF_READ_TOKEN")
|
120 |
+
|
121 |
+
PREPROCESSOR_CONTROLNET = {
|
122 |
+
"openpose": [
|
123 |
+
"Openpose",
|
124 |
+
"None",
|
125 |
+
],
|
126 |
+
"scribble": [
|
127 |
+
"HED",
|
128 |
+
"PidiNet",
|
129 |
+
"None",
|
130 |
+
],
|
131 |
+
"softedge": [
|
132 |
+
"PidiNet",
|
133 |
+
"HED",
|
134 |
+
"HED safe",
|
135 |
+
"PidiNet safe",
|
136 |
+
"None",
|
137 |
+
],
|
138 |
+
"segmentation": [
|
139 |
+
"UPerNet",
|
140 |
+
"None",
|
141 |
+
],
|
142 |
+
"depth": [
|
143 |
+
"DPT",
|
144 |
+
"Midas",
|
145 |
+
"None",
|
146 |
+
],
|
147 |
+
"normalbae": [
|
148 |
+
"NormalBae",
|
149 |
+
"None",
|
150 |
+
],
|
151 |
+
"lineart": [
|
152 |
+
"Lineart",
|
153 |
+
"Lineart coarse",
|
154 |
+
"Lineart (anime)",
|
155 |
+
"None",
|
156 |
+
"None (anime)",
|
157 |
+
],
|
158 |
+
"lineart_anime": [
|
159 |
+
"Lineart",
|
160 |
+
"Lineart coarse",
|
161 |
+
"Lineart (anime)",
|
162 |
+
"None",
|
163 |
+
"None (anime)",
|
164 |
+
],
|
165 |
+
"shuffle": [
|
166 |
+
"ContentShuffle",
|
167 |
+
"None",
|
168 |
+
],
|
169 |
+
"canny": [
|
170 |
+
"Canny",
|
171 |
+
"None",
|
172 |
+
],
|
173 |
+
"mlsd": [
|
174 |
+
"MLSD",
|
175 |
+
"None",
|
176 |
+
],
|
177 |
+
"ip2p": [
|
178 |
+
"ip2p"
|
179 |
+
],
|
180 |
+
"recolor": [
|
181 |
+
"Recolor luminance",
|
182 |
+
"Recolor intensity",
|
183 |
+
"None",
|
184 |
+
],
|
185 |
+
"tile": [
|
186 |
+
"Mild Blur",
|
187 |
+
"Moderate Blur",
|
188 |
+
"Heavy Blur",
|
189 |
+
"None",
|
190 |
+
],
|
191 |
+
|
192 |
+
}
|
193 |
+
|
194 |
+
TASK_STABLEPY = {
|
195 |
+
'txt2img': 'txt2img',
|
196 |
+
'img2img': 'img2img',
|
197 |
+
'inpaint': 'inpaint',
|
198 |
+
# 'canny T2I Adapter': 'sdxl_canny_t2i', # NO HAVE STEP CALLBACK PARAMETERS SO NOT WORKS WITH DIFFUSERS 0.29.0
|
199 |
+
# 'sketch T2I Adapter': 'sdxl_sketch_t2i',
|
200 |
+
# 'lineart T2I Adapter': 'sdxl_lineart_t2i',
|
201 |
+
# 'depth-midas T2I Adapter': 'sdxl_depth-midas_t2i',
|
202 |
+
# 'openpose T2I Adapter': 'sdxl_openpose_t2i',
|
203 |
+
'openpose ControlNet': 'openpose',
|
204 |
+
'canny ControlNet': 'canny',
|
205 |
+
'mlsd ControlNet': 'mlsd',
|
206 |
+
'scribble ControlNet': 'scribble',
|
207 |
+
'softedge ControlNet': 'softedge',
|
208 |
+
'segmentation ControlNet': 'segmentation',
|
209 |
+
'depth ControlNet': 'depth',
|
210 |
+
'normalbae ControlNet': 'normalbae',
|
211 |
+
'lineart ControlNet': 'lineart',
|
212 |
+
'lineart_anime ControlNet': 'lineart_anime',
|
213 |
+
'shuffle ControlNet': 'shuffle',
|
214 |
+
'ip2p ControlNet': 'ip2p',
|
215 |
+
'optical pattern ControlNet': 'pattern',
|
216 |
+
'recolor ControlNet': 'recolor',
|
217 |
+
'tile ControlNet': 'tile',
|
218 |
+
}
|
219 |
+
|
220 |
+
TASK_MODEL_LIST = list(TASK_STABLEPY.keys())
|
221 |
+
|
222 |
+
UPSCALER_DICT_GUI = {
|
223 |
+
None: None,
|
224 |
+
"Lanczos": "Lanczos",
|
225 |
+
"Nearest": "Nearest",
|
226 |
+
'Latent': 'Latent',
|
227 |
+
'Latent (antialiased)': 'Latent (antialiased)',
|
228 |
+
'Latent (bicubic)': 'Latent (bicubic)',
|
229 |
+
'Latent (bicubic antialiased)': 'Latent (bicubic antialiased)',
|
230 |
+
'Latent (nearest)': 'Latent (nearest)',
|
231 |
+
'Latent (nearest-exact)': 'Latent (nearest-exact)',
|
232 |
+
"RealESRGAN_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
|
233 |
+
"RealESRNet_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth",
|
234 |
+
"RealESRGAN_x4plus_anime_6B": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
|
235 |
+
"RealESRGAN_x2plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
|
236 |
+
"realesr-animevideov3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
|
237 |
+
"realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
238 |
+
"realesr-general-wdn-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
|
239 |
+
"4x-UltraSharp": "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth",
|
240 |
+
"4x_foolhardy_Remacri": "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth",
|
241 |
+
"Remacri4xExtraSmoother": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth",
|
242 |
+
"AnimeSharp4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth",
|
243 |
+
"lollypop": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/lollypop.pth",
|
244 |
+
"RealisticRescaler4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/RealisticRescaler%204x.pth",
|
245 |
+
"NickelbackFS4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/NickelbackFS%204x.pth"
|
246 |
+
}
|
247 |
+
|
248 |
+
UPSCALER_KEYS = list(UPSCALER_DICT_GUI.keys())
|
249 |
+
|
250 |
+
|
251 |
+
def download_things(directory, url, hf_token="", civitai_api_key=""):
|
252 |
+
url = url.strip()
|
253 |
+
|
254 |
+
if "drive.google.com" in url:
|
255 |
+
original_dir = os.getcwd()
|
256 |
+
os.chdir(directory)
|
257 |
+
os.system(f"gdown --fuzzy {url}")
|
258 |
+
os.chdir(original_dir)
|
259 |
+
elif "huggingface.co" in url:
|
260 |
+
url = url.replace("?download=true", "")
|
261 |
+
# url = urllib.parse.quote(url, safe=':/') # fix encoding
|
262 |
+
if "/blob/" in url:
|
263 |
+
url = url.replace("/blob/", "/resolve/")
|
264 |
+
user_header = f'"Authorization: Bearer {hf_token}"'
|
265 |
+
if hf_token:
|
266 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
267 |
+
else:
|
268 |
+
os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
269 |
+
elif "civitai.com" in url:
|
270 |
+
if "?" in url:
|
271 |
+
url = url.split("?")[0]
|
272 |
+
if civitai_api_key:
|
273 |
+
url = url + f"?token={civitai_api_key}"
|
274 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
275 |
+
else:
|
276 |
+
print("\033[91mYou need an API key to download Civitai models.\033[0m")
|
277 |
+
else:
|
278 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
279 |
+
|
280 |
+
|
281 |
+
def get_model_list(directory_path):
|
282 |
+
model_list = []
|
283 |
+
valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'}
|
284 |
+
|
285 |
+
for filename in os.listdir(directory_path):
|
286 |
+
if os.path.splitext(filename)[1] in valid_extensions:
|
287 |
+
# name_without_extension = os.path.splitext(filename)[0]
|
288 |
+
file_path = os.path.join(directory_path, filename)
|
289 |
+
# model_list.append((name_without_extension, file_path))
|
290 |
+
model_list.append(file_path)
|
291 |
+
print('\033[34mFILE: ' + file_path + '\033[0m')
|
292 |
+
return model_list
|
293 |
+
|
294 |
+
|
295 |
+
directory_models = 'models'
|
296 |
+
os.makedirs(directory_models, exist_ok=True)
|
297 |
+
directory_loras = 'loras'
|
298 |
+
os.makedirs(directory_loras, exist_ok=True)
|
299 |
+
directory_vaes = 'vaes'
|
300 |
+
os.makedirs(directory_vaes, exist_ok=True)
|
301 |
|
302 |
# Download stuffs
|
303 |
+
for url in [url.strip() for url in download_model.split(',')]:
|
304 |
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
|
305 |
+
download_things(directory_models, url, HF_TOKEN, CIVITAI_API_KEY)
|
306 |
+
for url in [url.strip() for url in download_vae.split(',')]:
|
307 |
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
|
308 |
+
download_things(directory_vaes, url, HF_TOKEN, CIVITAI_API_KEY)
|
309 |
+
for url in [url.strip() for url in download_lora.split(',')]:
|
310 |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
311 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
312 |
|
313 |
# Download Embeddings
|
314 |
+
directory_embeds = 'embedings'
|
315 |
+
os.makedirs(directory_embeds, exist_ok=True)
|
316 |
+
download_embeds = [
|
317 |
+
'https://huggingface.co/datasets/Nerfgun3/bad_prompt/blob/main/bad_prompt_version2.pt',
|
318 |
+
'https://huggingface.co/embed/negative/resolve/main/EasyNegativeV2.safetensors',
|
319 |
+
'https://huggingface.co/embed/negative/resolve/main/bad-hands-5.pt',
|
320 |
+
]
|
321 |
+
|
322 |
+
for url_embed in download_embeds:
|
323 |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
|
324 |
+
download_things(directory_embeds, url_embed, HF_TOKEN, CIVITAI_API_KEY)
|
325 |
|
326 |
# Build list models
|
327 |
+
embed_list = get_model_list(directory_embeds)
|
328 |
+
model_list = get_model_list(directory_models)
|
329 |
+
model_list = load_diffusers_format_model + model_list
|
330 |
+
lora_model_list = get_model_list(directory_loras)
|
|
|
|
|
|
|
331 |
lora_model_list.insert(0, "None")
|
332 |
lora_model_list = lora_model_list + DIFFUSERS_FORMAT_LORAS
|
333 |
+
vae_model_list = get_model_list(directory_vaes)
|
|
|
334 |
vae_model_list.insert(0, "None")
|
335 |
|
336 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
337 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
#######################
|
339 |
# GUI
|
340 |
#######################
|
341 |
+
import gradio as gr
|
342 |
+
import logging
|
343 |
logging.getLogger("diffusers").setLevel(logging.ERROR)
|
344 |
+
import diffusers
|
345 |
diffusers.utils.logging.set_verbosity(40)
|
346 |
+
import warnings
|
347 |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
|
348 |
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
|
349 |
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
|
350 |
+
from stablepy import logger
|
351 |
+
|
352 |
logger.setLevel(logging.DEBUG)
|
353 |
|
354 |
+
msg_inc_vae = (
|
355 |
+
"Use the right VAE for your model to maintain image quality. The wrong"
|
356 |
+
" VAE can lead to poor results, like blurriness in the generated images."
|
357 |
+
)
|
358 |
+
|
359 |
+
SDXL_TASK = [k for k, v in TASK_STABLEPY.items() if v in SDXL_TASKS]
|
360 |
+
SD_TASK = [k for k, v in TASK_STABLEPY.items() if v in SD15_TASKS]
|
361 |
+
FLUX_TASK = list(TASK_STABLEPY.keys())[:3] + [k for k, v in TASK_STABLEPY.items() if v in FLUX_CN_UNION_MODES.keys()]
|
362 |
+
|
363 |
+
MODEL_TYPE_TASK = {
|
364 |
+
"SD 1.5": SD_TASK,
|
365 |
+
"SDXL": SDXL_TASK,
|
366 |
+
"FLUX": FLUX_TASK,
|
367 |
+
}
|
368 |
+
|
369 |
+
MODEL_TYPE_CLASS = {
|
370 |
+
"diffusers:StableDiffusionPipeline": "SD 1.5",
|
371 |
+
"diffusers:StableDiffusionXLPipeline": "SDXL",
|
372 |
+
"diffusers:FluxPipeline": "FLUX",
|
373 |
+
}
|
374 |
+
|
375 |
+
POST_PROCESSING_SAMPLER = ["Use same sampler"] + scheduler_names[:-2]
|
376 |
+
|
377 |
CSS = """
|
378 |
.contain { display: flex; flex-direction: column; }
|
379 |
#component-0 { height: 100%; }
|
380 |
#gallery { flex-grow: 1; }
|
|
|
381 |
"""
|
382 |
|
383 |
+
SUBTITLE_GUI = (
|
384 |
+
"### This demo uses [diffusers](https://github.com/huggingface/diffusers)"
|
385 |
+
" to perform different tasks in image generation."
|
386 |
+
)
|
387 |
+
|
388 |
+
|
389 |
+
def extract_parameters(input_string):
|
390 |
+
parameters = {}
|
391 |
+
input_string = input_string.replace("\n", "")
|
392 |
+
|
393 |
+
if "Negative prompt:" not in input_string:
|
394 |
+
if "Steps:" in input_string:
|
395 |
+
input_string = input_string.replace("Steps:", "Negative prompt: Steps:")
|
396 |
+
else:
|
397 |
+
print("Invalid metadata")
|
398 |
+
parameters["prompt"] = input_string
|
399 |
+
return parameters
|
400 |
+
|
401 |
+
parm = input_string.split("Negative prompt:")
|
402 |
+
parameters["prompt"] = parm[0].strip()
|
403 |
+
if "Steps:" not in parm[1]:
|
404 |
+
print("Steps not detected")
|
405 |
+
parameters["neg_prompt"] = parm[1].strip()
|
406 |
+
return parameters
|
407 |
+
parm = parm[1].split("Steps:")
|
408 |
+
parameters["neg_prompt"] = parm[0].strip()
|
409 |
+
input_string = "Steps:" + parm[1]
|
410 |
+
|
411 |
+
# Extracting Steps
|
412 |
+
steps_match = re.search(r'Steps: (\d+)', input_string)
|
413 |
+
if steps_match:
|
414 |
+
parameters['Steps'] = int(steps_match.group(1))
|
415 |
+
|
416 |
+
# Extracting Size
|
417 |
+
size_match = re.search(r'Size: (\d+x\d+)', input_string)
|
418 |
+
if size_match:
|
419 |
+
parameters['Size'] = size_match.group(1)
|
420 |
+
width, height = map(int, parameters['Size'].split('x'))
|
421 |
+
parameters['width'] = width
|
422 |
+
parameters['height'] = height
|
423 |
+
|
424 |
+
# Extracting other parameters
|
425 |
+
other_parameters = re.findall(r'(\w+): (.*?)(?=, \w+|$)', input_string)
|
426 |
+
for param in other_parameters:
|
427 |
+
parameters[param[0]] = param[1].strip('"')
|
428 |
+
|
429 |
+
return parameters
|
430 |
+
|
431 |
+
|
432 |
+
def get_my_lora(link_url):
|
433 |
+
for url in [url.strip() for url in link_url.split(',')]:
|
434 |
+
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
435 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
436 |
+
new_lora_model_list = get_model_list(directory_loras)
|
437 |
+
new_lora_model_list.insert(0, "None")
|
438 |
+
new_lora_model_list = new_lora_model_list + DIFFUSERS_FORMAT_LORAS
|
439 |
+
|
440 |
+
return gr.update(
|
441 |
+
choices=new_lora_model_list
|
442 |
+
), gr.update(
|
443 |
+
choices=new_lora_model_list
|
444 |
+
), gr.update(
|
445 |
+
choices=new_lora_model_list
|
446 |
+
), gr.update(
|
447 |
+
choices=new_lora_model_list
|
448 |
+
), gr.update(
|
449 |
+
choices=new_lora_model_list
|
450 |
+
),
|
451 |
+
|
452 |
+
|
453 |
+
def info_html(json_data, title, subtitle):
|
454 |
+
return f"""
|
455 |
+
<div style='padding: 0; border-radius: 10px;'>
|
456 |
+
<p style='margin: 0; font-weight: bold;'>{title}</p>
|
457 |
+
<details>
|
458 |
+
<summary>Details</summary>
|
459 |
+
<p style='margin: 0; font-weight: bold;'>{subtitle}</p>
|
460 |
+
</details>
|
461 |
+
</div>
|
462 |
+
"""
|
463 |
+
|
464 |
+
|
465 |
+
def get_model_type(repo_id: str):
|
466 |
+
api = HfApi(token=os.environ.get("HF_TOKEN")) # if use private or gated model
|
467 |
+
default = "SD 1.5"
|
468 |
+
try:
|
469 |
+
model = api.model_info(repo_id=repo_id, timeout=5.0)
|
470 |
+
tags = model.tags
|
471 |
+
for tag in tags:
|
472 |
+
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
|
473 |
+
except Exception:
|
474 |
+
return default
|
475 |
+
return default
|
476 |
+
|
477 |
|
478 |
class GuiSD:
|
479 |
def __init__(self, stream=True):
|
480 |
self.model = None
|
|
|
|
|
|
|
|
|
481 |
|
482 |
+
print("Loading model...")
|
483 |
+
self.model = Model_Diffusers(
|
484 |
+
base_model_id="Lykon/dreamshaper-8",
|
485 |
+
task_name="txt2img",
|
486 |
+
vae_model=None,
|
487 |
+
type_model_precision=torch.float16,
|
488 |
+
retain_task_model_in_cache=False,
|
489 |
+
device="cpu",
|
490 |
+
)
|
491 |
+
self.model.load_beta_styles()
|
|
|
|
|
|
|
|
|
|
|
492 |
|
493 |
+
def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):
|
494 |
|
495 |
+
yield f"Loading model: {model_name}"
|
496 |
|
497 |
vae_model = vae_model if vae_model != "None" else None
|
498 |
model_type = get_model_type(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
499 |
|
500 |
+
if vae_model:
|
|
|
|
|
|
|
|
|
501 |
vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
|
502 |
if model_type != vae_type:
|
503 |
+
gr.Warning(msg_inc_vae)
|
|
|
|
|
504 |
|
505 |
+
self.model.device = torch.device("cpu")
|
506 |
+
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
507 |
|
508 |
+
self.model.load_pipe(
|
509 |
+
model_name,
|
510 |
+
task_name=TASK_STABLEPY[task],
|
511 |
+
vae_model=vae_model,
|
512 |
+
type_model_precision=dtype_model,
|
513 |
+
retain_task_model_in_cache=False,
|
514 |
+
)
|
515 |
|
516 |
yield f"Model loaded: {model_name}"
|
517 |
|
|
|
536 |
lora_scale4,
|
537 |
lora5,
|
538 |
lora_scale5,
|
|
|
|
|
|
|
|
|
539 |
sampler,
|
|
|
|
|
540 |
img_height,
|
541 |
img_width,
|
542 |
model_name,
|
|
|
554 |
high_threshold,
|
555 |
value_threshold,
|
556 |
distance_threshold,
|
|
|
|
|
557 |
controlnet_output_scaling_in_unet,
|
558 |
controlnet_start_threshold,
|
559 |
controlnet_stop_threshold,
|
|
|
561 |
syntax_weights,
|
562 |
upscaler_model_path,
|
563 |
upscaler_increases_size,
|
564 |
+
esrgan_tile,
|
565 |
+
esrgan_tile_overlap,
|
566 |
hires_steps,
|
567 |
hires_denoising_strength,
|
568 |
hires_sampler,
|
|
|
570 |
hires_negative_prompt,
|
571 |
hires_before_adetailer,
|
572 |
hires_after_adetailer,
|
|
|
|
|
|
|
573 |
loop_generation,
|
574 |
leave_progress_bar,
|
575 |
disable_progress_bar,
|
576 |
image_previews,
|
577 |
display_images,
|
578 |
save_generated_images,
|
|
|
579 |
image_storage_location,
|
580 |
retain_compel_previous_load,
|
581 |
retain_detailfix_model_previous_load,
|
|
|
610 |
mask_blur_b,
|
611 |
mask_padding_b,
|
612 |
retain_task_cache_gui,
|
|
|
613 |
image_ip1,
|
614 |
mask_ip1,
|
615 |
model_ip1,
|
|
|
621 |
mode_ip2,
|
622 |
scale_ip2,
|
623 |
pag_scale,
|
|
|
|
|
|
|
624 |
):
|
|
|
|
|
625 |
|
626 |
vae_model = vae_model if vae_model != "None" else None
|
627 |
+
loras_list = [lora1, lora2, lora3, lora4, lora5]
|
628 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
629 |
msg_lora = ""
|
630 |
|
|
|
643 |
(image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2),
|
644 |
]
|
645 |
|
646 |
+
for imgip, mskip, modelip, modeip, scaleip in all_adapters:
|
647 |
+
if imgip:
|
648 |
+
params_ip_img.append(imgip)
|
649 |
+
if mskip:
|
650 |
+
params_ip_msk.append(mskip)
|
651 |
+
params_ip_model.append(modelip)
|
652 |
+
params_ip_mode.append(modeip)
|
653 |
+
params_ip_scale.append(scaleip)
|
|
|
654 |
|
655 |
+
self.model.stream_config(concurrency=5, latent_resize_by=1, vae_decoding=False)
|
|
|
656 |
|
657 |
if task != "txt2img" and not image_control:
|
658 |
+
raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'")
|
659 |
|
660 |
+
if task == "inpaint" and not image_mask:
|
661 |
+
raise ValueError("No mask image found: Specify one in 'Image Mask'")
|
662 |
|
663 |
+
if upscaler_model_path in UPSCALER_KEYS[:9]:
|
664 |
upscaler_model = upscaler_model_path
|
665 |
else:
|
666 |
+
directory_upscalers = 'upscalers'
|
667 |
+
os.makedirs(directory_upscalers, exist_ok=True)
|
668 |
+
|
669 |
url_upscaler = UPSCALER_DICT_GUI[upscaler_model_path]
|
670 |
|
671 |
+
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
|
672 |
+
download_things(directory_upscalers, url_upscaler, HF_TOKEN)
|
673 |
|
674 |
+
upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}"
|
675 |
|
676 |
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)
|
677 |
|
|
|
725 |
"high_threshold": high_threshold,
|
726 |
"value_threshold": value_threshold,
|
727 |
"distance_threshold": distance_threshold,
|
|
|
|
|
728 |
"lora_A": lora1 if lora1 != "None" else None,
|
729 |
"lora_scale_A": lora_scale1,
|
730 |
"lora_B": lora2 if lora2 != "None" else None,
|
|
|
735 |
"lora_scale_D": lora_scale4,
|
736 |
"lora_E": lora5 if lora5 != "None" else None,
|
737 |
"lora_scale_E": lora_scale5,
|
738 |
+
"textual_inversion": embed_list if textual_inversion and self.model.class_name != "StableDiffusionXLPipeline" else [],
|
|
|
|
|
|
|
|
|
739 |
"syntax_weights": syntax_weights, # "Classic"
|
740 |
"sampler": sampler,
|
|
|
|
|
741 |
"xformers_memory_efficient_attention": xformers_memory_efficient_attention,
|
742 |
"gui_active": True,
|
743 |
"loop_generation": loop_generation,
|
|
|
755 |
"image_previews": image_previews,
|
756 |
"display_images": display_images,
|
757 |
"save_generated_images": save_generated_images,
|
|
|
758 |
"image_storage_location": image_storage_location,
|
759 |
"retain_compel_previous_load": retain_compel_previous_load,
|
760 |
"retain_detailfix_model_previous_load": retain_detailfix_model_previous_load,
|
|
|
764 |
"t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor),
|
765 |
"upscaler_model_path": upscaler_model,
|
766 |
"upscaler_increases_size": upscaler_increases_size,
|
767 |
+
"esrgan_tile": esrgan_tile,
|
768 |
+
"esrgan_tile_overlap": esrgan_tile_overlap,
|
769 |
"hires_steps": hires_steps,
|
770 |
"hires_denoising_strength": hires_denoising_strength,
|
771 |
"hires_prompt": hires_prompt,
|
|
|
773 |
"hires_sampler": hires_sampler,
|
774 |
"hires_before_adetailer": hires_before_adetailer,
|
775 |
"hires_after_adetailer": hires_after_adetailer,
|
|
|
|
|
776 |
"ip_adapter_image": params_ip_img,
|
777 |
"ip_adapter_mask": params_ip_msk,
|
778 |
"ip_adapter_model": params_ip_model,
|
779 |
"ip_adapter_mode": params_ip_mode,
|
780 |
"ip_adapter_scale": params_ip_scale,
|
|
|
|
|
|
|
781 |
}
|
782 |
|
|
|
|
|
|
|
|
|
783 |
self.model.device = torch.device("cuda:0")
|
784 |
+
if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * 5:
|
785 |
self.model.pipe.transformer.to(self.model.device)
|
786 |
print("transformer to cuda")
|
787 |
|
788 |
+
info_state = "PROCESSING "
|
789 |
+
for img, seed, image_path, metadata in self.model(**pipe_params):
|
790 |
+
info_state += ">"
|
|
|
|
|
791 |
if image_path:
|
792 |
+
info_state = f"COMPLETE. Seeds: {str(seed)}"
|
793 |
if vae_msg:
|
794 |
+
info_state = info_state + "<br>" + vae_msg
|
|
|
|
|
|
|
|
|
|
|
795 |
|
796 |
for status, lora in zip(self.model.lora_status, self.model.lora_memory):
|
797 |
if status:
|
|
|
800 |
msg_lora += f"<br>Error with: {lora}"
|
801 |
|
802 |
if msg_lora:
|
803 |
+
info_state += msg_lora
|
804 |
|
805 |
+
info_state = info_state + "<br>" + "GENERATION DATA:<br>" + metadata[0].replace("\n", "<br>") + "<br>-------<br>"
|
806 |
|
807 |
download_links = "<br>".join(
|
808 |
[
|
|
|
811 |
]
|
812 |
)
|
813 |
if save_generated_images:
|
814 |
+
info_state += f"<br>{download_links}"
|
815 |
+
|
816 |
+
yield img, info_state
|
817 |
|
|
|
818 |
|
819 |
+
def update_task_options(model_name, task_name):
|
820 |
+
new_choices = MODEL_TYPE_TASK[get_model_type(model_name)]
|
821 |
+
|
822 |
+
if task_name not in new_choices:
|
823 |
+
task_name = "txt2img"
|
824 |
+
|
825 |
+
return gr.update(value=task_name, choices=new_choices)
|
826 |
|
827 |
|
828 |
def dynamic_gpu_duration(func, duration, *args):
|
829 |
|
|
|
830 |
@spaces.GPU(duration=duration)
|
831 |
def wrapped_func():
|
832 |
yield from func(*args)
|
|
|
840 |
|
841 |
|
842 |
def sd_gen_generate_pipeline(*args):
|
843 |
+
|
844 |
gpu_duration_arg = int(args[-1]) if args[-1] else 59
|
845 |
verbose_arg = int(args[-2])
|
846 |
load_lora_cpu = args[-3]
|
847 |
generation_args = args[:-3]
|
848 |
lora_list = [
|
849 |
None if item == "None" else item
|
850 |
+
for item in [args[7], args[9], args[11], args[13], args[15]]
|
851 |
]
|
852 |
+
lora_status = [None] * 5
|
853 |
|
854 |
msg_load_lora = "Updating LoRAs in GPU..."
|
855 |
if load_lora_cpu:
|
856 |
+
msg_load_lora = "Updating LoRAs in CPU (Slow but saves GPU usage)..."
|
857 |
|
858 |
+
if lora_list != sd_gen.model.lora_memory and lora_list != [None] * 5:
|
859 |
+
yield None, msg_load_lora
|
860 |
|
861 |
# Load lora in CPU
|
862 |
if load_lora_cpu:
|
863 |
+
lora_status = sd_gen.model.lora_merge(
|
864 |
lora_A=lora_list[0], lora_scale_A=args[8],
|
865 |
lora_B=lora_list[1], lora_scale_B=args[10],
|
866 |
lora_C=lora_list[2], lora_scale_C=args[12],
|
867 |
lora_D=lora_list[3], lora_scale_D=args[14],
|
868 |
lora_E=lora_list[4], lora_scale_E=args[16],
|
|
|
|
|
869 |
)
|
870 |
print(lora_status)
|
871 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
872 |
if verbose_arg:
|
873 |
for status, lora in zip(lora_status, lora_list):
|
874 |
if status:
|
|
|
876 |
elif status is not None:
|
877 |
gr.Warning(f"Failed to load LoRA: {lora}")
|
878 |
|
879 |
+
if lora_status == [None] * 5 and sd_gen.model.lora_memory != [None] * 5 and load_lora_cpu:
|
880 |
lora_cache_msg = ", ".join(
|
881 |
str(x) for x in sd_gen.model.lora_memory if x is not None
|
882 |
)
|
883 |
gr.Info(f"LoRAs in cache: {lora_cache_msg}")
|
884 |
|
885 |
+
msg_request = f"Requesting {gpu_duration_arg}s. of GPU time"
|
|
|
886 |
gr.Info(msg_request)
|
887 |
print(msg_request)
|
888 |
+
|
889 |
+
# yield from sd_gen.generate_pipeline(*generation_args)
|
890 |
|
891 |
start_time = time.time()
|
892 |
|
|
|
893 |
yield from dynamic_gpu_duration(
|
894 |
sd_gen.generate_pipeline,
|
895 |
gpu_duration_arg,
|
|
|
897 |
)
|
898 |
|
899 |
end_time = time.time()
|
|
|
|
|
|
|
|
|
900 |
|
901 |
if verbose_arg:
|
902 |
+
execution_time = end_time - start_time
|
903 |
+
msg_task_complete = (
|
904 |
+
f"GPU task complete in: {round(execution_time, 0) + 1} seconds"
|
905 |
+
)
|
906 |
gr.Info(msg_task_complete)
|
907 |
print(msg_task_complete)
|
908 |
|
|
|
909 |
|
910 |
+
def extract_exif_data(image):
|
911 |
+
if image is None: return ""
|
912 |
|
913 |
+
try:
|
914 |
+
metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']
|
|
|
915 |
|
916 |
+
for key in metadata_keys:
|
917 |
+
if key in image.info:
|
918 |
+
return image.info[key]
|
919 |
+
|
920 |
+
return str(image.info)
|
921 |
+
|
922 |
+
except Exception as e:
|
923 |
+
return f"Error extracting metadata: {str(e)}"
|
924 |
|
|
|
|
|
925 |
|
926 |
+
@spaces.GPU(duration=20)
|
927 |
+
def esrgan_upscale(image, upscaler_name, upscaler_size):
|
928 |
+
if image is None: return None
|
929 |
|
930 |
+
from stablepy.diffusers_vanilla.utils import save_pil_image_with_metadata
|
931 |
+
from stablepy import UpscalerESRGAN
|
932 |
|
933 |
+
exif_image = extract_exif_data(image)
|
|
|
934 |
|
935 |
+
url_upscaler = UPSCALER_DICT_GUI[upscaler_name]
|
936 |
+
directory_upscalers = 'upscalers'
|
937 |
+
os.makedirs(directory_upscalers, exist_ok=True)
|
938 |
+
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
|
939 |
+
download_things(directory_upscalers, url_upscaler, HF_TOKEN)
|
940 |
|
941 |
+
scaler_beta = UpscalerESRGAN(0, 0)
|
942 |
+
image_up = scaler_beta.upscale(image, upscaler_size, f"./upscalers/{url_upscaler.split('/')[-1]}")
|
943 |
|
944 |
image_path = save_pil_image_with_metadata(image_up, f'{os.getcwd()}/up_images', exif_image)
|
945 |
|
946 |
return image_path
|
947 |
|
948 |
|
|
|
949 |
dynamic_gpu_duration.zerogpu = True
|
950 |
sd_gen_generate_pipeline.zerogpu = True
|
951 |
sd_gen = GuiSD()
|
|
|
958 |
|
959 |
with gr.Column(scale=2):
|
960 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
961 |
task_gui = gr.Dropdown(label="Task", choices=SDXL_TASK, value=TASK_MODEL_LIST[0])
|
962 |
model_name_gui = gr.Dropdown(label="Model", choices=model_list, value=model_list[0], allow_custom_value=True)
|
963 |
prompt_gui = gr.Textbox(lines=5, placeholder="Enter prompt", label="Prompt")
|
964 |
+
neg_prompt_gui = gr.Textbox(lines=3, placeholder="Enter Neg prompt", label="Negative prompt")
|
965 |
with gr.Row(equal_height=False):
|
966 |
set_params_gui = gr.Button(value="↙️", variant="secondary", size="sm")
|
967 |
clear_prompt_gui = gr.Button(value="🗑️", variant="secondary", size="sm")
|
|
|
974 |
[task_gui],
|
975 |
)
|
976 |
|
977 |
+
load_model_gui = gr.HTML()
|
978 |
|
979 |
result_images = gr.Gallery(
|
980 |
label="Generated images",
|
|
|
995 |
gpu_duration_gui = gr.Number(minimum=5, maximum=240, value=59, show_label=False, container=False, info="GPU time duration (seconds)")
|
996 |
with gr.Column():
|
997 |
verbose_info_gui = gr.Checkbox(value=False, container=False, label="Status info")
|
998 |
+
load_lora_cpu_gui = gr.Checkbox(value=False, container=False, label="Load LoRAs on CPU (Save GPU time)")
|
999 |
|
1000 |
with gr.Column(scale=1):
|
1001 |
+
steps_gui = gr.Slider(minimum=1, maximum=100, step=1, value=30, label="Steps")
|
1002 |
cfg_gui = gr.Slider(minimum=0, maximum=30, step=0.5, value=7., label="CFG")
|
1003 |
+
sampler_gui = gr.Dropdown(label="Sampler", choices=scheduler_names, value="Euler a")
|
|
|
1004 |
img_width_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Width")
|
1005 |
img_height_gui = gr.Slider(minimum=64, maximum=4096, step=8, value=1024, label="Img Height")
|
1006 |
seed_gui = gr.Number(minimum=-1, maximum=9999999999, value=-1, label="Seed")
|
|
|
1019 |
"width": gr.update(value=1024),
|
1020 |
"height": gr.update(value=1024),
|
1021 |
"Seed": gr.update(value=-1),
|
1022 |
+
"Sampler": gr.update(value="Euler a"),
|
1023 |
+
"scale": gr.update(value=7.), # cfg
|
1024 |
+
"skip": gr.update(value=True),
|
1025 |
"Model": gr.update(value=name_model),
|
|
|
|
|
|
|
1026 |
}
|
1027 |
valid_keys = list(valid_receptors.keys())
|
1028 |
|
1029 |
parameters = extract_parameters(base_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1030 |
|
1031 |
for key, val in parameters.items():
|
1032 |
# print(val)
|
|
|
1035 |
if key == "Sampler":
|
1036 |
if val not in scheduler_names:
|
1037 |
continue
|
1038 |
+
elif key == "skip":
|
|
|
|
|
|
|
1039 |
if "," in str(val):
|
1040 |
val = val.replace(",", "")
|
1041 |
if int(val) >= 2:
|
|
|
1048 |
val = re.sub(r'\s+', ' ', re.sub(r',+', ',', val)).strip()
|
1049 |
if key in ["Steps", "width", "height", "Seed"]:
|
1050 |
val = int(val)
|
1051 |
+
if key == "scale":
|
|
|
|
|
1052 |
val = float(val)
|
1053 |
if key == "Model":
|
1054 |
filtered_models = [m for m in model_list if val in m]
|
|
|
1077 |
cfg_gui,
|
1078 |
clip_skip_gui,
|
1079 |
model_name_gui,
|
|
|
|
|
|
|
1080 |
],
|
1081 |
)
|
1082 |
|
|
|
1093 |
)
|
1094 |
|
1095 |
num_images_gui = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Images")
|
1096 |
+
prompt_s_options = [
|
1097 |
+
("Compel format: (word)weight", "Compel"),
|
1098 |
+
("Classic format: (word:weight)", "Classic"),
|
1099 |
+
("Classic-original format: (word:weight)", "Classic-original"),
|
1100 |
+
("Classic-no_norm format: (word:weight)", "Classic-no_norm"),
|
1101 |
+
("Classic-ignore", "Classic-ignore"),
|
1102 |
+
("None", "None"),
|
1103 |
+
]
|
1104 |
+
prompt_syntax_gui = gr.Dropdown(label="Prompt Syntax", choices=prompt_s_options, value=prompt_s_options[1][1])
|
1105 |
vae_model_gui = gr.Dropdown(label="VAE Model", choices=vae_model_list, value=vae_model_list[0])
|
1106 |
|
1107 |
with gr.Accordion("Hires fix", open=False, visible=True):
|
1108 |
|
1109 |
upscaler_model_path_gui = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0])
|
1110 |
upscaler_increases_size_gui = gr.Slider(minimum=1.1, maximum=4., step=0.1, value=1.2, label="Upscale by")
|
1111 |
+
esrgan_tile_gui = gr.Slider(minimum=0, value=0, maximum=500, step=1, label="ESRGAN Tile")
|
1112 |
+
esrgan_tile_overlap_gui = gr.Slider(minimum=1, maximum=200, step=1, value=8, label="ESRGAN Tile Overlap")
|
1113 |
hires_steps_gui = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps")
|
1114 |
hires_denoising_strength_gui = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength")
|
1115 |
hires_sampler_gui = gr.Dropdown(label="Hires Sampler", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])
|
|
|
|
|
|
|
1116 |
hires_prompt_gui = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3)
|
1117 |
hires_negative_prompt_gui = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3)
|
1118 |
|
1119 |
with gr.Accordion("LoRA", open=False, visible=True):
|
1120 |
|
1121 |
+
def lora_dropdown(label):
|
1122 |
+
return gr.Dropdown(label=label, choices=lora_model_list, value="None", allow_custom_value=True)
|
1123 |
|
1124 |
+
def lora_scale_slider(label):
|
1125 |
+
return gr.Slider(minimum=-2, maximum=2, step=0.01, value=0.33, label=label)
|
1126 |
|
1127 |
lora1_gui = lora_dropdown("Lora1")
|
1128 |
lora_scale_1_gui = lora_scale_slider("Lora Scale 1")
|
|
|
1134 |
lora_scale_4_gui = lora_scale_slider("Lora Scale 4")
|
1135 |
lora5_gui = lora_dropdown("Lora5")
|
1136 |
lora_scale_5_gui = lora_scale_slider("Lora Scale 5")
|
|
|
|
|
|
|
|
|
1137 |
|
1138 |
with gr.Accordion("From URL", open=False, visible=True):
|
1139 |
+
text_lora = gr.Textbox(label="LoRA URL", placeholder="https://civitai.com/api/download/models/28907", lines=1)
|
1140 |
+
button_lora = gr.Button("Get and update lists of LoRAs")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1141 |
button_lora.click(
|
1142 |
get_my_lora,
|
1143 |
+
[text_lora],
|
1144 |
+
[lora1_gui, lora2_gui, lora3_gui, lora4_gui, lora5_gui]
|
1145 |
)
|
1146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1147 |
with gr.Accordion("IP-Adapter", open=False, visible=True):
|
1148 |
|
1149 |
+
IP_MODELS = sorted(list(set(IP_ADAPTERS_SD + IP_ADAPTERS_SDXL)))
|
1150 |
+
MODE_IP_OPTIONS = ["original", "style", "layout", "style+layout"]
|
1151 |
+
|
1152 |
with gr.Accordion("IP-Adapter 1", open=False, visible=True):
|
1153 |
image_ip1 = gr.Image(label="IP Image", type="filepath")
|
1154 |
mask_ip1 = gr.Image(label="IP Mask", type="filepath")
|
|
|
1167 |
image_mask_gui = gr.Image(label="Image Mask", type="filepath")
|
1168 |
strength_gui = gr.Slider(
|
1169 |
minimum=0.01, maximum=1.0, step=0.01, value=0.55, label="Strength",
|
1170 |
+
info="This option adjusts the level of changes for img2img and inpainting."
|
1171 |
)
|
1172 |
+
image_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution")
|
1173 |
+
preprocessor_name_gui = gr.Dropdown(label="Preprocessor Name", choices=PREPROCESSOR_CONTROLNET["canny"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1174 |
|
1175 |
def change_preprocessor_choices(task):
|
1176 |
task = TASK_STABLEPY[task]
|
1177 |
+
if task in PREPROCESSOR_CONTROLNET.keys():
|
1178 |
+
choices_task = PREPROCESSOR_CONTROLNET[task]
|
1179 |
else:
|
1180 |
+
choices_task = PREPROCESSOR_CONTROLNET["canny"]
|
1181 |
return gr.update(choices=choices_task, value=choices_task[0])
|
1182 |
+
|
1183 |
task_gui.change(
|
1184 |
change_preprocessor_choices,
|
1185 |
[task_gui],
|
1186 |
[preprocessor_name_gui],
|
1187 |
)
|
1188 |
+
preprocess_resolution_gui = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocess Resolution")
|
1189 |
+
low_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="Canny low threshold")
|
1190 |
+
high_threshold_gui = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="Canny high threshold")
|
1191 |
+
value_threshold_gui = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="Hough value threshold (MLSD)")
|
1192 |
+
distance_threshold_gui = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="Hough distance threshold (MLSD)")
|
1193 |
+
control_net_output_scaling_gui = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet")
|
1194 |
+
control_net_start_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)")
|
1195 |
+
control_net_stop_threshold_gui = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)")
|
1196 |
|
1197 |
with gr.Accordion("T2I adapter", open=False, visible=False):
|
1198 |
t2i_adapter_preprocessor_gui = gr.Checkbox(value=True, label="T2i Adapter Preprocessor")
|
|
|
1248 |
negative_prompt_ad_a_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
|
1249 |
strength_ad_a_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
|
1250 |
face_detector_ad_a_gui = gr.Checkbox(label="Face detector", value=True)
|
1251 |
+
person_detector_ad_a_gui = gr.Checkbox(label="Person detector", value=True)
|
1252 |
hand_detector_ad_a_gui = gr.Checkbox(label="Hand detector", value=False)
|
1253 |
mask_dilation_a_gui = gr.Number(label="Mask dilation:", value=4, minimum=1)
|
1254 |
mask_blur_a_gui = gr.Number(label="Mask blur:", value=4, minimum=1)
|
|
|
1260 |
prompt_ad_b_gui = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3)
|
1261 |
negative_prompt_ad_b_gui = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
|
1262 |
strength_ad_b_gui = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
|
1263 |
+
face_detector_ad_b_gui = gr.Checkbox(label="Face detector", value=True)
|
1264 |
person_detector_ad_b_gui = gr.Checkbox(label="Person detector", value=True)
|
1265 |
hand_detector_ad_b_gui = gr.Checkbox(label="Hand detector", value=False)
|
1266 |
mask_dilation_b_gui = gr.Number(label="Mask dilation:", value=4, minimum=1)
|
|
|
1268 |
mask_padding_b_gui = gr.Number(label="Mask padding:", value=32, minimum=1)
|
1269 |
|
1270 |
with gr.Accordion("Other settings", open=False, visible=True):
|
|
|
|
|
1271 |
save_generated_images_gui = gr.Checkbox(value=True, label="Create a download link for the images")
|
|
|
1272 |
hires_before_adetailer_gui = gr.Checkbox(value=False, label="Hires Before Adetailer")
|
1273 |
hires_after_adetailer_gui = gr.Checkbox(value=True, label="Hires After Adetailer")
|
1274 |
generator_in_cpu_gui = gr.Checkbox(value=False, label="Generator in CPU")
|
|
|
1278 |
retain_task_cache_gui = gr.Checkbox(value=False, label="Retain task model in cache")
|
1279 |
leave_progress_bar_gui = gr.Checkbox(value=True, label="Leave Progress Bar")
|
1280 |
disable_progress_bar_gui = gr.Checkbox(value=False, label="Disable Progress Bar")
|
1281 |
+
display_images_gui = gr.Checkbox(value=True, label="Display Images")
|
1282 |
image_previews_gui = gr.Checkbox(value=True, label="Image Previews")
|
1283 |
image_storage_location_gui = gr.Textbox(value="./images", label="Image Storage Location")
|
1284 |
retain_compel_previous_load_gui = gr.Checkbox(value=False, label="Retain Compel Previous Load")
|
|
|
1287 |
xformers_memory_efficient_attention_gui = gr.Checkbox(value=False, label="Xformers Memory Efficient Attention")
|
1288 |
|
1289 |
with gr.Accordion("Examples and help", open=False, visible=True):
|
1290 |
+
gr.Markdown(
|
1291 |
+
"""### Help:
|
1292 |
+
- The current space runs on a ZERO GPU which is assigned for approximately 60 seconds; Therefore, if you submit expensive tasks, the operation may be canceled upon reaching the maximum allowed time with 'GPU TASK ABORTED'.
|
1293 |
+
- Distorted or strange images often result from high prompt weights, so it's best to use low weights and scales, and consider using Classic variants like 'Classic-original'.
|
1294 |
+
- For better results with Pony Diffusion, try using sampler DPM++ 1s or DPM2 with Compel or Classic prompt weights.
|
1295 |
+
"""
|
1296 |
+
)
|
1297 |
+
gr.Markdown(
|
1298 |
+
"""### The following examples perform specific tasks:
|
1299 |
+
1. Generation with SDXL and upscale
|
1300 |
+
2. Generation with FLUX dev
|
1301 |
+
3. ControlNet Canny SDXL
|
1302 |
+
4. Optical pattern (Optical illusion) SDXL
|
1303 |
+
5. Convert an image to a coloring drawing
|
1304 |
+
6. ControlNet OpenPose SD 1.5 and Latent upscale
|
1305 |
+
|
1306 |
+
- Different tasks can be performed, such as img2img or using the IP adapter, to preserve a person's appearance or a specific style based on an image.
|
1307 |
+
"""
|
1308 |
+
)
|
1309 |
gr.Examples(
|
1310 |
+
examples=[
|
1311 |
+
[
|
1312 |
+
"1girl, souryuu asuka langley, neon genesis evangelion, rebuild of evangelion, lance of longinus, cat hat, plugsuit, pilot suit, red bodysuit, sitting, crossed legs, black eye patch, throne, looking down, from bottom, looking at viewer, outdoors, (masterpiece), (best quality), (ultra-detailed), very aesthetic, illustration, disheveled hair, perfect composition, moist skin, intricate details",
|
1313 |
+
"nfsw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, unfinished, very displeasing, oldest, early, chromatic aberration, artistic error, scan, abstract",
|
1314 |
+
28,
|
1315 |
+
7.0,
|
1316 |
+
-1,
|
1317 |
+
"None",
|
1318 |
+
0.33,
|
1319 |
+
"Euler a",
|
1320 |
+
1152,
|
1321 |
+
896,
|
1322 |
+
"cagliostrolab/animagine-xl-3.1",
|
1323 |
+
"txt2img",
|
1324 |
+
"image.webp", # img conttol
|
1325 |
+
1024, # img resolution
|
1326 |
+
0.35, # strength
|
1327 |
+
1.0, # cn scale
|
1328 |
+
0.0, # cn start
|
1329 |
+
1.0, # cn end
|
1330 |
+
"Classic",
|
1331 |
+
"Nearest",
|
1332 |
+
45,
|
1333 |
+
False,
|
1334 |
+
],
|
1335 |
+
[
|
1336 |
+
"a digital illustration of a movie poster titled 'Finding Emo', finding nemo parody poster, featuring a depressed cartoon clownfish with black emo hair, eyeliner, and piercings, bored expression, swimming in a dark underwater scene, in the background, movie title in a dripping, grungy font, moody blue and purple color palette",
|
1337 |
+
"",
|
1338 |
+
24,
|
1339 |
+
3.5,
|
1340 |
+
-1,
|
1341 |
+
"None",
|
1342 |
+
0.33,
|
1343 |
+
"Euler a",
|
1344 |
+
1152,
|
1345 |
+
896,
|
1346 |
+
"black-forest-labs/FLUX.1-dev",
|
1347 |
+
"txt2img",
|
1348 |
+
None, # img conttol
|
1349 |
+
1024, # img resolution
|
1350 |
+
0.35, # strength
|
1351 |
+
1.0, # cn scale
|
1352 |
+
0.0, # cn start
|
1353 |
+
1.0, # cn end
|
1354 |
+
"Classic",
|
1355 |
+
None,
|
1356 |
+
70,
|
1357 |
+
True,
|
1358 |
+
],
|
1359 |
+
[
|
1360 |
+
"((masterpiece)), best quality, blonde disco girl, detailed face, realistic face, realistic hair, dynamic pose, pink pvc, intergalactic disco background, pastel lights, dynamic contrast, airbrush, fine detail, 70s vibe, midriff",
|
1361 |
+
"(worst quality:1.2), (bad quality:1.2), (poor quality:1.2), (missing fingers:1.2), bad-artist-anime, bad-artist, bad-picture-chill-75v",
|
1362 |
+
48,
|
1363 |
+
3.5,
|
1364 |
+
-1,
|
1365 |
+
"None",
|
1366 |
+
0.33,
|
1367 |
+
"DPM++ 2M SDE Lu",
|
1368 |
+
1024,
|
1369 |
+
1024,
|
1370 |
+
"misri/epicrealismXL_v7FinalDestination",
|
1371 |
+
"canny ControlNet",
|
1372 |
+
"image.webp", # img conttol
|
1373 |
+
1024, # img resolution
|
1374 |
+
0.35, # strength
|
1375 |
+
1.0, # cn scale
|
1376 |
+
0.0, # cn start
|
1377 |
+
1.0, # cn end
|
1378 |
+
"Classic",
|
1379 |
+
None,
|
1380 |
+
44,
|
1381 |
+
False,
|
1382 |
+
],
|
1383 |
+
[
|
1384 |
+
"cinematic scenery old city ruins",
|
1385 |
+
"(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), (illustration, 3d, 2d, painting, cartoons, sketch, blurry, film grain, noise), (low quality, worst quality:1.2)",
|
1386 |
+
50,
|
1387 |
+
4.0,
|
1388 |
+
-1,
|
1389 |
+
"None",
|
1390 |
+
0.33,
|
1391 |
+
"Euler a",
|
1392 |
+
1024,
|
1393 |
+
1024,
|
1394 |
+
"misri/juggernautXL_juggernautX",
|
1395 |
+
"optical pattern ControlNet",
|
1396 |
+
"spiral_no_transparent.png", # img conttol
|
1397 |
+
1024, # img resolution
|
1398 |
+
0.35, # strength
|
1399 |
+
1.0, # cn scale
|
1400 |
+
0.05, # cn start
|
1401 |
+
0.75, # cn end
|
1402 |
+
"Classic",
|
1403 |
+
None,
|
1404 |
+
35,
|
1405 |
+
False,
|
1406 |
+
],
|
1407 |
+
[
|
1408 |
+
"black and white, line art, coloring drawing, clean line art, black strokes, no background, white, black, free lines, black scribbles, on paper, A blend of comic book art and lineart full of black and white color, masterpiece, high-resolution, trending on Pixiv fan box, palette knife, brush strokes, two-dimensional, planar vector, T-shirt design, stickers, and T-shirt design, vector art, fantasy art, Adobe Illustrator, hand-painted, digital painting, low polygon, soft lighting, aerial view, isometric style, retro aesthetics, 8K resolution, black sketch lines, monochrome, invert color",
|
1409 |
+
"color, red, green, yellow, colored, duplicate, blurry, abstract, disfigured, deformed, animated, toy, figure, framed, 3d, bad art, poorly drawn, extra limbs, close up, b&w, weird colors, blurry, watermark, blur haze, 2 heads, long neck, watermark, elongated body, cropped image, out of frame, draft, deformed hands, twisted fingers, double image, malformed hands, multiple heads, extra limb, ugly, poorly drawn hands, missing limb, cut-off, over satured, grain, lowères, bad anatomy, poorly drawn face, mutation, mutated, floating limbs, disconnected limbs, out of focus, long body, disgusting, extra fingers, groos proportions, missing arms, mutated hands, cloned face, missing legs, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, blurry, bad anatomy, blurred, watermark, grainy, signature, cut off, draft, deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation, bluelish, blue",
|
1410 |
+
20,
|
1411 |
+
4.0,
|
1412 |
+
-1,
|
1413 |
+
"loras/Coloring_book_-_LineArt.safetensors",
|
1414 |
+
1.0,
|
1415 |
+
"DPM++ 2M SDE Karras",
|
1416 |
+
1024,
|
1417 |
+
1024,
|
1418 |
+
"cagliostrolab/animagine-xl-3.1",
|
1419 |
+
"lineart ControlNet",
|
1420 |
+
"color_image.png", # img conttol
|
1421 |
+
896, # img resolution
|
1422 |
+
0.35, # strength
|
1423 |
+
1.0, # cn scale
|
1424 |
+
0.0, # cn start
|
1425 |
+
1.0, # cn end
|
1426 |
+
"Compel",
|
1427 |
+
None,
|
1428 |
+
35,
|
1429 |
+
False,
|
1430 |
+
],
|
1431 |
+
[
|
1432 |
+
"1girl,face,curly hair,red hair,white background,",
|
1433 |
+
"(worst quality:2),(low quality:2),(normal quality:2),lowres,watermark,",
|
1434 |
+
38,
|
1435 |
+
5.0,
|
1436 |
+
-1,
|
1437 |
+
"None",
|
1438 |
+
0.33,
|
1439 |
+
"DPM++ 2M SDE Karras",
|
1440 |
+
512,
|
1441 |
+
512,
|
1442 |
+
"digiplay/majicMIX_realistic_v7",
|
1443 |
+
"openpose ControlNet",
|
1444 |
+
"image.webp", # img conttol
|
1445 |
+
1024, # img resolution
|
1446 |
+
0.35, # strength
|
1447 |
+
1.0, # cn scale
|
1448 |
+
0.0, # cn start
|
1449 |
+
0.9, # cn end
|
1450 |
+
"Compel",
|
1451 |
+
"Latent (antialiased)",
|
1452 |
+
46,
|
1453 |
+
False,
|
1454 |
+
],
|
1455 |
+
],
|
1456 |
fn=sd_gen.generate_pipeline,
|
1457 |
inputs=[
|
1458 |
prompt_gui,
|
|
|
1478 |
gpu_duration_gui,
|
1479 |
load_lora_cpu_gui,
|
1480 |
],
|
1481 |
+
outputs=[result_images, actual_task_info],
|
1482 |
cache_examples=False,
|
1483 |
)
|
1484 |
+
gr.Markdown(
|
1485 |
+
"""### Resources
|
1486 |
+
- John6666's space has some great features you might find helpful [link](https://huggingface.co/spaces/John6666/DiffuseCraftMod).
|
1487 |
+
- You can also try the image generator in Colab’s free tier, which provides free GPU [link](https://github.com/R3gm/SD_diffusers_interactive).
|
1488 |
+
"""
|
1489 |
+
)
|
1490 |
|
1491 |
with gr.Tab("Inpaint mask maker", render=True):
|
1492 |
|
1493 |
+
def create_mask_now(img, invert):
|
1494 |
+
import numpy as np
|
1495 |
+
import time
|
1496 |
+
|
1497 |
+
time.sleep(0.5)
|
1498 |
+
|
1499 |
+
transparent_image = img["layers"][0]
|
1500 |
+
|
1501 |
+
# Extract the alpha channel
|
1502 |
+
alpha_channel = np.array(transparent_image)[:, :, 3]
|
1503 |
+
|
1504 |
+
# Create a binary mask by thresholding the alpha channel
|
1505 |
+
binary_mask = alpha_channel > 1
|
1506 |
+
|
1507 |
+
if invert:
|
1508 |
+
print("Invert")
|
1509 |
+
# Invert the binary mask so that the drawn shape is white and the rest is black
|
1510 |
+
binary_mask = np.invert(binary_mask)
|
1511 |
+
|
1512 |
+
# Convert the binary mask to a 3-channel RGB mask
|
1513 |
+
rgb_mask = np.stack((binary_mask,) * 3, axis=-1)
|
1514 |
+
|
1515 |
+
# Convert the mask to uint8
|
1516 |
+
rgb_mask = rgb_mask.astype(np.uint8) * 255
|
1517 |
+
|
1518 |
+
return img["background"], rgb_mask
|
1519 |
+
|
1520 |
with gr.Row():
|
1521 |
with gr.Column(scale=2):
|
1522 |
image_base = gr.ImageEditor(
|
|
|
1525 |
# enable crop (or disable it)
|
1526 |
# transforms=["crop"],
|
1527 |
brush=gr.Brush(
|
1528 |
+
default_size="16", # or leave it as 'auto'
|
1529 |
+
color_mode="fixed", # 'fixed' hides the user swatches and colorpicker, 'defaults' shows it
|
1530 |
+
# default_color="black", # html names are supported
|
1531 |
+
colors=[
|
1532 |
+
"rgba(0, 0, 0, 1)", # rgb(a)
|
1533 |
+
"rgba(0, 0, 0, 0.1)",
|
1534 |
+
"rgba(255, 255, 255, 0.1)",
|
1535 |
+
# "hsl(360, 120, 120)" # in fact any valid colorstring
|
1536 |
+
]
|
1537 |
),
|
1538 |
eraser=gr.Eraser(default_size="16")
|
1539 |
)
|
|
|
1569 |
|
1570 |
with gr.Row():
|
1571 |
with gr.Column():
|
|
|
|
|
|
|
1572 |
image_up_tab = gr.Image(label="Image", type="pil", sources=["upload"])
|
1573 |
+
upscaler_tab = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS[9:], value=UPSCALER_KEYS[11])
|
1574 |
upscaler_size_tab = gr.Slider(minimum=1., maximum=4., step=0.1, value=1.1, label="Upscale by")
|
1575 |
generate_button_up_tab = gr.Button(value="START UPSCALE", variant="primary")
|
1576 |
|
|
|
1578 |
result_up_tab = gr.Image(label="Result", type="pil", interactive=False, format="png")
|
1579 |
|
1580 |
generate_button_up_tab.click(
|
1581 |
+
fn=esrgan_upscale,
|
1582 |
inputs=[image_up_tab, upscaler_tab, upscaler_size_tab],
|
1583 |
outputs=[result_up_tab],
|
1584 |
)
|
1585 |
|
|
|
|
|
|
|
1586 |
generate_button.click(
|
1587 |
fn=sd_gen.load_new_model,
|
1588 |
inputs=[
|
1589 |
model_name_gui,
|
1590 |
vae_model_gui,
|
1591 |
+
task_gui
|
|
|
1592 |
],
|
1593 |
outputs=[load_model_gui],
|
1594 |
queue=True,
|
|
|
1613 |
lora_scale_4_gui,
|
1614 |
lora5_gui,
|
1615 |
lora_scale_5_gui,
|
|
|
|
|
|
|
|
|
1616 |
sampler_gui,
|
|
|
|
|
1617 |
img_height_gui,
|
1618 |
img_width_gui,
|
1619 |
model_name_gui,
|
|
|
1631 |
high_threshold_gui,
|
1632 |
value_threshold_gui,
|
1633 |
distance_threshold_gui,
|
|
|
|
|
1634 |
control_net_output_scaling_gui,
|
1635 |
control_net_start_threshold_gui,
|
1636 |
control_net_stop_threshold_gui,
|
|
|
1638 |
prompt_syntax_gui,
|
1639 |
upscaler_model_path_gui,
|
1640 |
upscaler_increases_size_gui,
|
1641 |
+
esrgan_tile_gui,
|
1642 |
+
esrgan_tile_overlap_gui,
|
1643 |
hires_steps_gui,
|
1644 |
hires_denoising_strength_gui,
|
1645 |
hires_sampler_gui,
|
|
|
1647 |
hires_negative_prompt_gui,
|
1648 |
hires_before_adetailer_gui,
|
1649 |
hires_after_adetailer_gui,
|
|
|
|
|
|
|
1650 |
loop_generation_gui,
|
1651 |
leave_progress_bar_gui,
|
1652 |
disable_progress_bar_gui,
|
1653 |
image_previews_gui,
|
1654 |
display_images_gui,
|
1655 |
save_generated_images_gui,
|
|
|
1656 |
image_storage_location_gui,
|
1657 |
retain_compel_previous_load_gui,
|
1658 |
retain_detailfix_model_previous_load_gui,
|
|
|
1687 |
mask_blur_b_gui,
|
1688 |
mask_padding_b_gui,
|
1689 |
retain_task_cache_gui,
|
|
|
1690 |
image_ip1,
|
1691 |
mask_ip1,
|
1692 |
model_ip1,
|
|
|
1698 |
mode_ip2,
|
1699 |
scale_ip2,
|
1700 |
pag_scale_gui,
|
|
|
|
|
|
|
1701 |
load_lora_cpu_gui,
|
1702 |
verbose_info_gui,
|
1703 |
gpu_duration_gui,
|
1704 |
],
|
1705 |
+
outputs=[result_images, actual_task_info],
|
1706 |
queue=True,
|
1707 |
show_progress="minimal",
|
1708 |
)
|
constants.py
DELETED
@@ -1,585 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from stablepy.diffusers_vanilla.constants import FLUX_CN_UNION_MODES
|
3 |
-
from stablepy import (
|
4 |
-
scheduler_names,
|
5 |
-
SD15_TASKS,
|
6 |
-
SDXL_TASKS,
|
7 |
-
ALL_BUILTIN_UPSCALERS,
|
8 |
-
IP_ADAPTERS_SD,
|
9 |
-
IP_ADAPTERS_SDXL,
|
10 |
-
)
|
11 |
-
|
12 |
-
# - **Download Models**
|
13 |
-
DOWNLOAD_MODEL = "https://huggingface.co/TechnoByte/MilkyWonderland/resolve/main/milkyWonderland_v40.safetensors"
|
14 |
-
|
15 |
-
# - **Download VAEs**
|
16 |
-
DOWNLOAD_VAE = "https://huggingface.co/fp16-guy/anything_kl-f8-anime2_vae-ft-mse-840000-ema-pruned_blessed_clearvae_fp16_cleaned/resolve/main/vae-ft-mse-840000-ema-pruned_fp16.safetensors?download=true"
|
17 |
-
|
18 |
-
# - **Download LoRAs**
|
19 |
-
DOWNLOAD_LORA = "https://huggingface.co/Leopain/color/resolve/main/Coloring_book_-_LineArt.safetensors, https://civitai.com/api/download/models/135867, https://huggingface.co/Linaqruf/anime-detailer-xl-lora/resolve/main/anime-detailer-xl.safetensors?download=true, https://huggingface.co/Linaqruf/style-enhancer-xl-lora/resolve/main/style-enhancer-xl.safetensors?download=true, https://huggingface.co/ByteDance/Hyper-SD/resolve/main/Hyper-SD15-8steps-CFG-lora.safetensors?download=true, https://huggingface.co/ByteDance/Hyper-SD/resolve/main/Hyper-SDXL-8steps-CFG-lora.safetensors?download=true"
|
20 |
-
|
21 |
-
LOAD_DIFFUSERS_FORMAT_MODEL = [
|
22 |
-
'stabilityai/stable-diffusion-xl-base-1.0',
|
23 |
-
'Laxhar/noobai-XL-1.1',
|
24 |
-
'Laxhar/noobai-XL-Vpred-1.0',
|
25 |
-
'black-forest-labs/FLUX.1-dev',
|
26 |
-
'John6666/blue-pencil-flux1-v021-fp8-flux',
|
27 |
-
'John6666/wai-ani-flux-v10forfp8-fp8-flux',
|
28 |
-
'John6666/xe-anime-flux-v04-fp8-flux',
|
29 |
-
'John6666/lyh-anime-flux-v2a1-fp8-flux',
|
30 |
-
'John6666/carnival-unchained-v10-fp8-flux',
|
31 |
-
'John6666/iniverse-mix-xl-sfwnsfw-fluxdfp16nsfwv11-fp8-flux',
|
32 |
-
'Freepik/flux.1-lite-8B-alpha',
|
33 |
-
'shauray/FluxDev-HyperSD-merged',
|
34 |
-
'mikeyandfriends/PixelWave_FLUX.1-dev_03',
|
35 |
-
'terminusresearch/FluxBooru-v0.3',
|
36 |
-
'black-forest-labs/FLUX.1-schnell',
|
37 |
-
# 'ostris/OpenFLUX.1',
|
38 |
-
'shuttleai/shuttle-3-diffusion',
|
39 |
-
'Laxhar/noobai-XL-1.0',
|
40 |
-
'John6666/noobai-xl-nai-xl-epsilonpred10version-sdxl',
|
41 |
-
'Laxhar/noobai-XL-0.77',
|
42 |
-
'John6666/noobai-xl-nai-xl-epsilonpred075version-sdxl',
|
43 |
-
'Laxhar/noobai-XL-0.6',
|
44 |
-
'John6666/noobai-xl-nai-xl-epsilonpred05version-sdxl',
|
45 |
-
'John6666/noobai-cyberfix-v10-sdxl',
|
46 |
-
'John6666/noobaiiter-xl-vpred-v075-sdxl',
|
47 |
-
'John6666/ntr-mix-illustrious-xl-noob-xl-v40-sdxl',
|
48 |
-
'John6666/ntr-mix-illustrious-xl-noob-xl-ntrmix35-sdxl',
|
49 |
-
'John6666/ntr-mix-illustrious-xl-noob-xl-v777-sdxl',
|
50 |
-
'John6666/ntr-mix-illustrious-xl-noob-xl-v777forlora-sdxl',
|
51 |
-
'John6666/ntr-mix-illustrious-xl-noob-xl-xi-sdxl',
|
52 |
-
'John6666/ntr-mix-illustrious-xl-noob-xl-xii-sdxl',
|
53 |
-
'John6666/ntr-mix-illustrious-xl-noob-xl-xiii-sdxl',
|
54 |
-
'John6666/mistoon-anime-v10illustrious-sdxl',
|
55 |
-
'John6666/hassaku-xl-illustrious-v10-sdxl',
|
56 |
-
'John6666/hassaku-xl-illustrious-v10style-sdxl',
|
57 |
-
'John6666/haruki-mix-illustrious-v10-sdxl',
|
58 |
-
'John6666/noobreal-v10-sdxl',
|
59 |
-
'John6666/complicated-noobai-merge-vprediction-sdxl',
|
60 |
-
'Laxhar/noobai-XL-Vpred-0.9r',
|
61 |
-
'Laxhar/noobai-XL-Vpred-0.75s',
|
62 |
-
'Laxhar/noobai-XL-Vpred-0.75',
|
63 |
-
'Laxhar/noobai-XL-Vpred-0.65s',
|
64 |
-
'Laxhar/noobai-XL-Vpred-0.65',
|
65 |
-
'Laxhar/noobai-XL-Vpred-0.6',
|
66 |
-
'John6666/cat-tower-noobai-xl-checkpoint-v14vpred-sdxl',
|
67 |
-
'John6666/noobai-xl-nai-xl-vpred05version-sdxl',
|
68 |
-
'John6666/noobai-fusion2-vpred-itercomp-v1-sdxl',
|
69 |
-
'John6666/noobai-xl-nai-xl-vpredtestversion-sdxl',
|
70 |
-
'John6666/chadmix-noobai075-illustrious01-v10-sdxl',
|
71 |
-
'OnomaAIResearch/Illustrious-xl-early-release-v0',
|
72 |
-
'John6666/illustriousxl-mmmix-v50-sdxl',
|
73 |
-
'John6666/illustrious-pencil-xl-v200-sdxl',
|
74 |
-
'John6666/obsession-illustriousxl-v21-sdxl',
|
75 |
-
'John6666/obsession-illustriousxl-v30-sdxl',
|
76 |
-
'John6666/obsession-illustriousxl-v31-sdxl',
|
77 |
-
'John6666/wai-nsfw-illustrious-v70-sdxl',
|
78 |
-
'John6666/illustrious-pony-mix-v3-sdxl',
|
79 |
-
'John6666/nova-anime-xl-illustriousv10-sdxl',
|
80 |
-
'John6666/nova-orange-xl-v30-sdxl',
|
81 |
-
'John6666/silvermoon-mix03-illustrious-v10-sdxl',
|
82 |
-
'eienmojiki/Anything-XL',
|
83 |
-
'eienmojiki/Starry-XL-v5.2',
|
84 |
-
'John6666/meinaxl-v2-sdxl',
|
85 |
-
'Eugeoter/artiwaifu-diffusion-2.0',
|
86 |
-
'comin/IterComp',
|
87 |
-
'John6666/epicrealism-xl-vxiabeast-sdxl',
|
88 |
-
'John6666/epicrealism-xl-v10kiss2-sdxl',
|
89 |
-
'John6666/epicrealism-xl-v8kiss-sdxl',
|
90 |
-
'misri/zavychromaxl_v80',
|
91 |
-
'SG161222/RealVisXL_V4.0',
|
92 |
-
'SG161222/RealVisXL_V5.0',
|
93 |
-
'misri/newrealityxlAllInOne_Newreality40',
|
94 |
-
'gsdf/CounterfeitXL',
|
95 |
-
'WhiteAiZ/autismmixSDXL_autismmixConfetti_diffusers',
|
96 |
-
'kitty7779/ponyDiffusionV6XL',
|
97 |
-
'GraydientPlatformAPI/aniverse-pony',
|
98 |
-
'John6666/ras-real-anime-screencap-v1-sdxl',
|
99 |
-
'John6666/duchaiten-pony-xl-no-score-v60-sdxl',
|
100 |
-
'John6666/mistoon-anime-ponyalpha-sdxl',
|
101 |
-
'John6666/mistoon-xl-copper-v20fast-sdxl',
|
102 |
-
'John6666/ebara-mfcg-pony-mix-v12-sdxl',
|
103 |
-
'John6666/t-ponynai3-v51-sdxl',
|
104 |
-
'John6666/t-ponynai3-v65-sdxl',
|
105 |
-
'John6666/prefect-pony-xl-v3-sdxl',
|
106 |
-
'John6666/prefect-pony-xl-v4-sdxl',
|
107 |
-
'John6666/mala-anime-mix-nsfw-pony-xl-v5-sdxl',
|
108 |
-
'John6666/wai-ani-nsfw-ponyxl-v10-sdxl',
|
109 |
-
'John6666/wai-real-mix-v11-sdxl',
|
110 |
-
'John6666/wai-shuffle-pdxl-v2-sdxl',
|
111 |
-
'John6666/wai-c-v6-sdxl',
|
112 |
-
'John6666/iniverse-mix-xl-sfwnsfw-pony-guofeng-v43-sdxl',
|
113 |
-
'John6666/sifw-annihilation-xl-v2-sdxl',
|
114 |
-
'John6666/photo-realistic-pony-v5-sdxl',
|
115 |
-
'John6666/pony-realism-v21main-sdxl',
|
116 |
-
'John6666/pony-realism-v22main-sdxl',
|
117 |
-
'John6666/cyberrealistic-pony-v63-sdxl',
|
118 |
-
'John6666/cyberrealistic-pony-v64-sdxl',
|
119 |
-
'John6666/cyberrealistic-pony-v65-sdxl',
|
120 |
-
'John6666/cyberrealistic-pony-v7-sdxl',
|
121 |
-
'GraydientPlatformAPI/realcartoon-pony-diffusion',
|
122 |
-
'John6666/nova-anime-xl-pony-v5-sdxl',
|
123 |
-
'John6666/autismmix-sdxl-autismmix-pony-sdxl',
|
124 |
-
'John6666/aimz-dream-real-pony-mix-v3-sdxl',
|
125 |
-
'John6666/prefectious-xl-nsfw-v10-sdxl',
|
126 |
-
'GraydientPlatformAPI/iniverseponyRealGuofeng49',
|
127 |
-
'John6666/duchaiten-pony-real-v11fix-sdxl',
|
128 |
-
'John6666/duchaiten-pony-real-v20-sdxl',
|
129 |
-
'John6666/duchaiten-pony-xl-no-score-v70-sdxl',
|
130 |
-
'Spestly/OdysseyXL-3.0',
|
131 |
-
'Spestly/OdysseyXL-4.0',
|
132 |
-
'KBlueLeaf/Kohaku-XL-Zeta',
|
133 |
-
'cagliostrolab/animagine-xl-3.1',
|
134 |
-
'yodayo-ai/kivotos-xl-2.0',
|
135 |
-
'yodayo-ai/holodayo-xl-2.1',
|
136 |
-
'yodayo-ai/clandestine-xl-1.0',
|
137 |
-
'digiplay/majicMIX_sombre_v2',
|
138 |
-
'digiplay/majicMIX_realistic_v6',
|
139 |
-
'digiplay/majicMIX_realistic_v7',
|
140 |
-
'digiplay/DreamShaper_8',
|
141 |
-
'digiplay/BeautifulArt_v1',
|
142 |
-
'digiplay/DarkSushi2.5D_v1',
|
143 |
-
'digiplay/darkphoenix3D_v1.1',
|
144 |
-
'digiplay/BeenYouLiteL11_diffusers',
|
145 |
-
'GraydientPlatformAPI/rev-animated2',
|
146 |
-
'myxlmynx/cyberrealistic_classic40',
|
147 |
-
'GraydientPlatformAPI/cyberreal6',
|
148 |
-
'GraydientPlatformAPI/cyberreal5',
|
149 |
-
'youknownothing/deliberate-v6',
|
150 |
-
'GraydientPlatformAPI/deliberate-cyber3',
|
151 |
-
'GraydientPlatformAPI/picx-real',
|
152 |
-
'GraydientPlatformAPI/perfectworld6',
|
153 |
-
'emilianJR/epiCRealism',
|
154 |
-
'votepurchase/counterfeitV30_v30',
|
155 |
-
'votepurchase/ChilloutMix',
|
156 |
-
'Meina/MeinaMix_V11',
|
157 |
-
'Meina/MeinaUnreal_V5',
|
158 |
-
'Meina/MeinaPastel_V7',
|
159 |
-
'GraydientPlatformAPI/realcartoon3d-17',
|
160 |
-
'GraydientPlatformAPI/realcartoon-pixar11',
|
161 |
-
'GraydientPlatformAPI/realcartoon-real17',
|
162 |
-
'nitrosocke/Ghibli-Diffusion',
|
163 |
-
]
|
164 |
-
|
165 |
-
DIFFUSERS_FORMAT_LORAS = [
|
166 |
-
"nerijs/animation2k-flux",
|
167 |
-
"XLabs-AI/flux-RealismLora",
|
168 |
-
"Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design",
|
169 |
-
]
|
170 |
-
|
171 |
-
DOWNLOAD_EMBEDS = [
|
172 |
-
'https://huggingface.co/datasets/Nerfgun3/bad_prompt/blob/main/bad_prompt_version2.pt',
|
173 |
-
# 'https://huggingface.co/embed/negative/resolve/main/EasyNegativeV2.safetensors',
|
174 |
-
# 'https://huggingface.co/embed/negative/resolve/main/bad-hands-5.pt',
|
175 |
-
]
|
176 |
-
|
177 |
-
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
|
178 |
-
HF_TOKEN = os.environ.get("HF_READ_TOKEN")
|
179 |
-
|
180 |
-
DIRECTORY_MODELS = 'models'
|
181 |
-
DIRECTORY_LORAS = 'loras'
|
182 |
-
DIRECTORY_VAES = 'vaes'
|
183 |
-
DIRECTORY_EMBEDS = 'embedings'
|
184 |
-
DIRECTORY_UPSCALERS = 'upscalers'
|
185 |
-
|
186 |
-
CACHE_HF = "/home/user/.cache/huggingface/hub/"
|
187 |
-
STORAGE_ROOT = "/home/user/"
|
188 |
-
|
189 |
-
TASK_STABLEPY = {
|
190 |
-
'txt2img': 'txt2img',
|
191 |
-
'img2img': 'img2img',
|
192 |
-
'inpaint': 'inpaint',
|
193 |
-
# 'canny T2I Adapter': 'sdxl_canny_t2i', # NO HAVE STEP CALLBACK PARAMETERS SO NOT WORKS WITH DIFFUSERS 0.29.0
|
194 |
-
# 'sketch T2I Adapter': 'sdxl_sketch_t2i',
|
195 |
-
# 'lineart T2I Adapter': 'sdxl_lineart_t2i',
|
196 |
-
# 'depth-midas T2I Adapter': 'sdxl_depth-midas_t2i',
|
197 |
-
# 'openpose T2I Adapter': 'sdxl_openpose_t2i',
|
198 |
-
'openpose ControlNet': 'openpose',
|
199 |
-
'canny ControlNet': 'canny',
|
200 |
-
'mlsd ControlNet': 'mlsd',
|
201 |
-
'scribble ControlNet': 'scribble',
|
202 |
-
'softedge ControlNet': 'softedge',
|
203 |
-
'segmentation ControlNet': 'segmentation',
|
204 |
-
'depth ControlNet': 'depth',
|
205 |
-
'normalbae ControlNet': 'normalbae',
|
206 |
-
'lineart ControlNet': 'lineart',
|
207 |
-
'lineart_anime ControlNet': 'lineart_anime',
|
208 |
-
'shuffle ControlNet': 'shuffle',
|
209 |
-
'ip2p ControlNet': 'ip2p',
|
210 |
-
'optical pattern ControlNet': 'pattern',
|
211 |
-
'recolor ControlNet': 'recolor',
|
212 |
-
'tile ControlNet': 'tile',
|
213 |
-
'repaint ControlNet': 'repaint',
|
214 |
-
}
|
215 |
-
|
216 |
-
TASK_MODEL_LIST = list(TASK_STABLEPY.keys())
|
217 |
-
|
218 |
-
UPSCALER_DICT_GUI = {
|
219 |
-
None: None,
|
220 |
-
**{bu: bu for bu in ALL_BUILTIN_UPSCALERS if bu not in ["HAT x4", "DAT x4", "DAT x3", "DAT x2", "SwinIR 4x"]},
|
221 |
-
# "RealESRGAN_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
|
222 |
-
"RealESRNet_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth",
|
223 |
-
# "RealESRGAN_x4plus_anime_6B": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
|
224 |
-
# "RealESRGAN_x2plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
|
225 |
-
# "realesr-animevideov3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
|
226 |
-
# "realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
227 |
-
# "realesr-general-wdn-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
|
228 |
-
"4x-UltraSharp": "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth",
|
229 |
-
"4x_foolhardy_Remacri": "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth",
|
230 |
-
"Remacri4xExtraSmoother": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth",
|
231 |
-
"AnimeSharp4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth",
|
232 |
-
"lollypop": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/lollypop.pth",
|
233 |
-
"RealisticRescaler4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/RealisticRescaler%204x.pth",
|
234 |
-
"NickelbackFS4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/NickelbackFS%204x.pth"
|
235 |
-
}
|
236 |
-
|
237 |
-
UPSCALER_KEYS = list(UPSCALER_DICT_GUI.keys())
|
238 |
-
|
239 |
-
DIFFUSERS_CONTROLNET_MODEL = [
|
240 |
-
"Automatic",
|
241 |
-
|
242 |
-
"brad-twinkl/controlnet-union-sdxl-1.0-promax",
|
243 |
-
"xinsir/controlnet-union-sdxl-1.0",
|
244 |
-
"xinsir/anime-painter",
|
245 |
-
"Eugeoter/noob-sdxl-controlnet-canny",
|
246 |
-
"Eugeoter/noob-sdxl-controlnet-lineart_anime",
|
247 |
-
"Eugeoter/noob-sdxl-controlnet-depth",
|
248 |
-
"Eugeoter/noob-sdxl-controlnet-normal",
|
249 |
-
"Eugeoter/noob-sdxl-controlnet-softedge_hed",
|
250 |
-
"Eugeoter/noob-sdxl-controlnet-scribble_pidinet",
|
251 |
-
"Eugeoter/noob-sdxl-controlnet-scribble_hed",
|
252 |
-
"Eugeoter/noob-sdxl-controlnet-manga_line",
|
253 |
-
"Eugeoter/noob-sdxl-controlnet-lineart_realistic",
|
254 |
-
"Eugeoter/noob-sdxl-controlnet-depth_midas-v1-1",
|
255 |
-
"dimitribarbot/controlnet-openpose-sdxl-1.0-safetensors",
|
256 |
-
"r3gm/controlnet-openpose-sdxl-1.0-fp16",
|
257 |
-
"r3gm/controlnet-canny-scribble-integrated-sdxl-v2-fp16",
|
258 |
-
"r3gm/controlnet-union-sdxl-1.0-fp16",
|
259 |
-
"r3gm/controlnet-lineart-anime-sdxl-fp16",
|
260 |
-
"r3gm/control_v1p_sdxl_qrcode_monster_fp16",
|
261 |
-
"r3gm/controlnet-tile-sdxl-1.0-fp16",
|
262 |
-
"r3gm/controlnet-recolor-sdxl-fp16",
|
263 |
-
"r3gm/controlnet-openpose-twins-sdxl-1.0-fp16",
|
264 |
-
"r3gm/controlnet-qr-pattern-sdxl-fp16",
|
265 |
-
"Yakonrus/SDXL_Controlnet_Tile_Realistic_v2",
|
266 |
-
"TheMistoAI/MistoLine",
|
267 |
-
"briaai/BRIA-2.3-ControlNet-Recoloring",
|
268 |
-
"briaai/BRIA-2.3-ControlNet-Canny",
|
269 |
-
|
270 |
-
"lllyasviel/control_v11p_sd15_openpose",
|
271 |
-
"lllyasviel/control_v11p_sd15_canny",
|
272 |
-
"lllyasviel/control_v11p_sd15_mlsd",
|
273 |
-
"lllyasviel/control_v11p_sd15_scribble",
|
274 |
-
"lllyasviel/control_v11p_sd15_softedge",
|
275 |
-
"lllyasviel/control_v11p_sd15_seg",
|
276 |
-
"lllyasviel/control_v11f1p_sd15_depth",
|
277 |
-
"lllyasviel/control_v11p_sd15_normalbae",
|
278 |
-
"lllyasviel/control_v11p_sd15_lineart",
|
279 |
-
"lllyasviel/control_v11p_sd15s2_lineart_anime",
|
280 |
-
"lllyasviel/control_v11e_sd15_shuffle",
|
281 |
-
"lllyasviel/control_v11e_sd15_ip2p",
|
282 |
-
"lllyasviel/control_v11p_sd15_inpaint",
|
283 |
-
"monster-labs/control_v1p_sd15_qrcode_monster",
|
284 |
-
"lllyasviel/control_v11f1e_sd15_tile",
|
285 |
-
"latentcat/control_v1p_sd15_brightness",
|
286 |
-
"yuanqiuye/qrcode_controlnet_v3",
|
287 |
-
|
288 |
-
"Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro",
|
289 |
-
# "Shakker-Labs/FLUX.1-dev-ControlNet-Pose",
|
290 |
-
# "Shakker-Labs/FLUX.1-dev-ControlNet-Depth",
|
291 |
-
# "jasperai/Flux.1-dev-Controlnet-Upscaler",
|
292 |
-
# "jasperai/Flux.1-dev-Controlnet-Depth",
|
293 |
-
# "jasperai/Flux.1-dev-Controlnet-Surface-Normals",
|
294 |
-
# "XLabs-AI/flux-controlnet-canny-diffusers",
|
295 |
-
# "XLabs-AI/flux-controlnet-hed-diffusers",
|
296 |
-
# "XLabs-AI/flux-controlnet-depth-diffusers",
|
297 |
-
# "InstantX/FLUX.1-dev-Controlnet-Union",
|
298 |
-
# "InstantX/FLUX.1-dev-Controlnet-Canny",
|
299 |
-
]
|
300 |
-
|
301 |
-
PROMPT_W_OPTIONS = [
|
302 |
-
("Compel format: (word)weight", "Compel"),
|
303 |
-
("Classic format: (word:weight)", "Classic"),
|
304 |
-
("Classic-original format: (word:weight)", "Classic-original"),
|
305 |
-
("Classic-no_norm format: (word:weight)", "Classic-no_norm"),
|
306 |
-
("Classic-sd_embed format: (word:weight)", "Classic-sd_embed"),
|
307 |
-
("Classic-ignore", "Classic-ignore"),
|
308 |
-
("None", "None"),
|
309 |
-
]
|
310 |
-
|
311 |
-
WARNING_MSG_VAE = (
|
312 |
-
"Use the right VAE for your model to maintain image quality. The wrong"
|
313 |
-
" VAE can lead to poor results, like blurriness in the generated images."
|
314 |
-
)
|
315 |
-
|
316 |
-
SDXL_TASK = [k for k, v in TASK_STABLEPY.items() if v in SDXL_TASKS]
|
317 |
-
SD_TASK = [k for k, v in TASK_STABLEPY.items() if v in SD15_TASKS]
|
318 |
-
FLUX_TASK = list(TASK_STABLEPY.keys())[:3] + [k for k, v in TASK_STABLEPY.items() if v in FLUX_CN_UNION_MODES.keys()]
|
319 |
-
|
320 |
-
MODEL_TYPE_TASK = {
|
321 |
-
"SD 1.5": SD_TASK,
|
322 |
-
"SDXL": SDXL_TASK,
|
323 |
-
"FLUX": FLUX_TASK,
|
324 |
-
}
|
325 |
-
|
326 |
-
MODEL_TYPE_CLASS = {
|
327 |
-
"diffusers:StableDiffusionPipeline": "SD 1.5",
|
328 |
-
"diffusers:StableDiffusionXLPipeline": "SDXL",
|
329 |
-
"diffusers:FluxPipeline": "FLUX",
|
330 |
-
}
|
331 |
-
|
332 |
-
DIFFUSECRAFT_CHECKPOINT_NAME = {
|
333 |
-
"sd1.5": "SD 1.5",
|
334 |
-
"sdxl": "SDXL",
|
335 |
-
"flux-dev": "FLUX",
|
336 |
-
"flux-schnell": "FLUX",
|
337 |
-
}
|
338 |
-
|
339 |
-
POST_PROCESSING_SAMPLER = ["Use same sampler"] + [
|
340 |
-
name_s for name_s in scheduler_names if "Auto-Loader" not in name_s
|
341 |
-
]
|
342 |
-
|
343 |
-
IP_MODELS = []
|
344 |
-
ALL_IPA = sorted(set(IP_ADAPTERS_SD + IP_ADAPTERS_SDXL))
|
345 |
-
|
346 |
-
for origin_name in ALL_IPA:
|
347 |
-
suffixes = []
|
348 |
-
if origin_name in IP_ADAPTERS_SD:
|
349 |
-
suffixes.append("sd1.5")
|
350 |
-
if origin_name in IP_ADAPTERS_SDXL:
|
351 |
-
suffixes.append("sdxl")
|
352 |
-
ref_name = f"{origin_name} ({'/'.join(suffixes)})"
|
353 |
-
IP_MODELS.append((ref_name, origin_name))
|
354 |
-
|
355 |
-
MODE_IP_OPTIONS = ["original", "style", "layout", "style+layout"]
|
356 |
-
|
357 |
-
SUBTITLE_GUI = (
|
358 |
-
"### This demo uses [diffusers](https://github.com/huggingface/diffusers)"
|
359 |
-
" to perform different tasks in image generation."
|
360 |
-
)
|
361 |
-
|
362 |
-
HELP_GUI = (
|
363 |
-
"""### Help:
|
364 |
-
- The current space runs on a ZERO GPU which is assigned for approximately 60 seconds; Therefore, if you submit expensive tasks, the operation may be canceled upon reaching the maximum allowed time with 'GPU TASK ABORTED'.
|
365 |
-
- Distorted or strange images often result from high prompt weights, so it's best to use low weights and scales, and consider using Classic variants like 'Classic-original'.
|
366 |
-
- For better results with Pony Diffusion, try using sampler DPM++ 1s or DPM2 with Compel or Classic prompt weights.
|
367 |
-
"""
|
368 |
-
)
|
369 |
-
|
370 |
-
EXAMPLES_GUI_HELP = (
|
371 |
-
"""### The following examples perform specific tasks:
|
372 |
-
1. Generation with SDXL and upscale
|
373 |
-
2. Generation with FLUX dev
|
374 |
-
3. ControlNet Canny SDXL
|
375 |
-
4. Optical pattern (Optical illusion) SDXL
|
376 |
-
5. Convert an image to a coloring drawing
|
377 |
-
6. V prediction model inference
|
378 |
-
7. V prediction model sd_embed variant inference
|
379 |
-
8. ControlNet OpenPose SD 1.5 and Latent upscale
|
380 |
-
|
381 |
-
- Different tasks can be performed, such as img2img or using the IP adapter, to preserve a person's appearance or a specific style based on an image.
|
382 |
-
"""
|
383 |
-
)
|
384 |
-
|
385 |
-
EXAMPLES_GUI = [
|
386 |
-
[
|
387 |
-
"splatter paint theme, 1girl, frame center, pretty face, face with artistic paint artwork, feminism, long hair, upper body view, futuristic expression illustrative painted background, origami, stripes, explosive paint splashes behind her, hand on cheek pose, strobe lighting, masterpiece photography creative artwork, golden morning light, highly detailed, masterpiece, best quality, very aesthetic, absurdres",
|
388 |
-
"logo, artist name, (worst quality, normal quality), bad-artist, ((bad anatomy)), ((bad hands)), ((bad proportions)), ((duplicate limbs)), ((fused limbs)), ((interlocking fingers)), ((poorly drawn face)), high contrast., score_6, score_5, score_4, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
|
389 |
-
28,
|
390 |
-
5.0,
|
391 |
-
-1,
|
392 |
-
"None",
|
393 |
-
0.33,
|
394 |
-
"DPM++ 2M SDE",
|
395 |
-
1152,
|
396 |
-
896,
|
397 |
-
"John6666/noobai-xl-nai-xl-epsilonpred10version-sdxl",
|
398 |
-
"txt2img",
|
399 |
-
"image.webp", # img conttol
|
400 |
-
1024, # img resolution
|
401 |
-
0.35, # strength
|
402 |
-
1.0, # cn scale
|
403 |
-
0.0, # cn start
|
404 |
-
1.0, # cn end
|
405 |
-
"Classic-no_norm",
|
406 |
-
"Nearest",
|
407 |
-
45,
|
408 |
-
False,
|
409 |
-
],
|
410 |
-
[
|
411 |
-
"a digital illustration of a movie poster titled 'Finding Emo', finding nemo parody poster, featuring a depressed cartoon clownfish with black emo hair, eyeliner, and piercings, bored expression, swimming in a dark underwater scene, in the background, movie title in a dripping, grungy font, moody blue and purple color palette",
|
412 |
-
"",
|
413 |
-
24,
|
414 |
-
3.5,
|
415 |
-
-1,
|
416 |
-
"None",
|
417 |
-
0.33,
|
418 |
-
"FlowMatch Euler",
|
419 |
-
1152,
|
420 |
-
896,
|
421 |
-
"black-forest-labs/FLUX.1-dev",
|
422 |
-
"txt2img",
|
423 |
-
None, # img conttol
|
424 |
-
1024, # img resolution
|
425 |
-
0.35, # strength
|
426 |
-
1.0, # cn scale
|
427 |
-
0.0, # cn start
|
428 |
-
1.0, # cn end
|
429 |
-
"Classic",
|
430 |
-
None,
|
431 |
-
70,
|
432 |
-
True,
|
433 |
-
],
|
434 |
-
[
|
435 |
-
"((masterpiece)), best quality, blonde disco girl, detailed face, realistic face, realistic hair, dynamic pose, pink pvc, intergalactic disco background, pastel lights, dynamic contrast, airbrush, fine detail, 70s vibe, midriff",
|
436 |
-
"(worst quality:1.2), (bad quality:1.2), (poor quality:1.2), (missing fingers:1.2), bad-artist-anime, bad-artist, bad-picture-chill-75v",
|
437 |
-
48,
|
438 |
-
3.5,
|
439 |
-
-1,
|
440 |
-
"None",
|
441 |
-
0.33,
|
442 |
-
"DPM++ 2M SDE Ef",
|
443 |
-
1024,
|
444 |
-
1024,
|
445 |
-
"John6666/epicrealism-xl-v10kiss2-sdxl",
|
446 |
-
"canny ControlNet",
|
447 |
-
"image.webp", # img conttol
|
448 |
-
1024, # img resolution
|
449 |
-
0.35, # strength
|
450 |
-
1.0, # cn scale
|
451 |
-
0.0, # cn start
|
452 |
-
1.0, # cn end
|
453 |
-
"Classic",
|
454 |
-
None,
|
455 |
-
44,
|
456 |
-
False,
|
457 |
-
],
|
458 |
-
[
|
459 |
-
"cinematic scenery old city ruins",
|
460 |
-
"(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), (illustration, 3d, 2d, painting, cartoons, sketch, blurry, film grain, noise), (low quality, worst quality:1.2)",
|
461 |
-
50,
|
462 |
-
4.0,
|
463 |
-
-1,
|
464 |
-
"None",
|
465 |
-
0.33,
|
466 |
-
"Euler a",
|
467 |
-
1024,
|
468 |
-
1024,
|
469 |
-
"SG161222/RealVisXL_V5.0",
|
470 |
-
"optical pattern ControlNet",
|
471 |
-
"spiral_no_transparent.png", # img conttol
|
472 |
-
1024, # img resolution
|
473 |
-
0.35, # strength
|
474 |
-
1.0, # cn scale
|
475 |
-
0.05, # cn start
|
476 |
-
0.8, # cn end
|
477 |
-
"Classic",
|
478 |
-
None,
|
479 |
-
35,
|
480 |
-
False,
|
481 |
-
],
|
482 |
-
[
|
483 |
-
"black and white, line art, coloring drawing, clean line art, black strokes, no background, white, black, free lines, black scribbles, on paper, A blend of comic book art and lineart full of black and white color, masterpiece, high-resolution, trending on Pixiv fan box, palette knife, brush strokes, two-dimensional, planar vector, T-shirt design, stickers, and T-shirt design, vector art, fantasy art, Adobe Illustrator, hand-painted, digital painting, low polygon, soft lighting, aerial view, isometric style, retro aesthetics, 8K resolution, black sketch lines, monochrome, invert color",
|
484 |
-
"color, red, green, yellow, colored, duplicate, blurry, abstract, disfigured, deformed, animated, toy, figure, framed, 3d, bad art, poorly drawn, extra limbs, close up, b&w, weird colors, blurry, watermark, blur haze, 2 heads, long neck, watermark, elongated body, cropped image, out of frame, draft, deformed hands, twisted fingers, double image, malformed hands, multiple heads, extra limb, ugly, poorly drawn hands, missing limb, cut-off, over satured, grain, lowères, bad anatomy, poorly drawn face, mutation, mutated, floating limbs, disconnected limbs, out of focus, long body, disgusting, extra fingers, groos proportions, missing arms, mutated hands, cloned face, missing legs, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, blurry, bad anatomy, blurred, watermark, grainy, signature, cut off, draft, deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation, bluelish, blue",
|
485 |
-
20,
|
486 |
-
4.0,
|
487 |
-
-1,
|
488 |
-
"loras/Coloring_book_-_LineArt.safetensors",
|
489 |
-
1.0,
|
490 |
-
"DPM++ 2M SDE",
|
491 |
-
1024,
|
492 |
-
1024,
|
493 |
-
"eienmojiki/Anything-XL",
|
494 |
-
"lineart ControlNet",
|
495 |
-
"color_image.png", # img conttol
|
496 |
-
896, # img resolution
|
497 |
-
0.35, # strength
|
498 |
-
1.0, # cn scale
|
499 |
-
0.0, # cn start
|
500 |
-
1.0, # cn end
|
501 |
-
"Compel",
|
502 |
-
None,
|
503 |
-
35,
|
504 |
-
False,
|
505 |
-
],
|
506 |
-
[
|
507 |
-
"[mochizuki_shiina], [syuri22], newest, reimu, solo, outdoors, water, flower, lantern",
|
508 |
-
"worst quality, normal quality, old, sketch,",
|
509 |
-
28,
|
510 |
-
7.0,
|
511 |
-
-1,
|
512 |
-
"None",
|
513 |
-
0.33,
|
514 |
-
"DPM 3M Ef",
|
515 |
-
1600,
|
516 |
-
1024,
|
517 |
-
"Laxhar/noobai-XL-Vpred-1.0",
|
518 |
-
"txt2img",
|
519 |
-
"color_image.png", # img conttol
|
520 |
-
1024, # img resolution
|
521 |
-
0.35, # strength
|
522 |
-
1.0, # cn scale
|
523 |
-
0.0, # cn start
|
524 |
-
1.0, # cn end
|
525 |
-
"Classic",
|
526 |
-
None,
|
527 |
-
30,
|
528 |
-
False,
|
529 |
-
],
|
530 |
-
[
|
531 |
-
"[mochizuki_shiina], [syuri22], newest, multiple girls, 2girls, earrings, jewelry, gloves, purple eyes, black hair, looking at viewer, nail polish, hat, smile, open mouth, fingerless gloves, sleeveless, :d, upper body, blue eyes, closed mouth, black gloves, hands up, long hair, shirt, bare shoulders, white headwear, blush, black headwear, blue nails, upper teeth only, short hair, white gloves, white shirt, teeth, rabbit hat, star earrings, purple nails, pink hair, detached sleeves, fingernails, fake animal ears, animal hat, sleeves past wrists, black shirt, medium hair, fur trim, sleeveless shirt, turtleneck, long sleeves, rabbit ears, star \\(symbol\\)",
|
532 |
-
"worst quality, normal quality, old, sketch,",
|
533 |
-
28,
|
534 |
-
7.0,
|
535 |
-
-1,
|
536 |
-
"None",
|
537 |
-
0.33,
|
538 |
-
"DPM 3M Ef",
|
539 |
-
1600,
|
540 |
-
1024,
|
541 |
-
"Laxhar/noobai-XL-Vpred-1.0",
|
542 |
-
"txt2img",
|
543 |
-
"color_image.png", # img conttol
|
544 |
-
1024, # img resolution
|
545 |
-
0.35, # strength
|
546 |
-
1.0, # cn scale
|
547 |
-
0.0, # cn start
|
548 |
-
1.0, # cn end
|
549 |
-
"Classic-sd_embed",
|
550 |
-
None,
|
551 |
-
30,
|
552 |
-
False,
|
553 |
-
],
|
554 |
-
[
|
555 |
-
"1girl,face,curly hair,red hair,white background,",
|
556 |
-
"(worst quality:2),(low quality:2),(normal quality:2),lowres,watermark,",
|
557 |
-
38,
|
558 |
-
5.0,
|
559 |
-
-1,
|
560 |
-
"None",
|
561 |
-
0.33,
|
562 |
-
"DPM++ 2M SDE",
|
563 |
-
512,
|
564 |
-
512,
|
565 |
-
"digiplay/majicMIX_realistic_v7",
|
566 |
-
"openpose ControlNet",
|
567 |
-
"image.webp", # img conttol
|
568 |
-
1024, # img resolution
|
569 |
-
0.35, # strength
|
570 |
-
1.0, # cn scale
|
571 |
-
0.0, # cn start
|
572 |
-
0.9, # cn end
|
573 |
-
"Classic-original",
|
574 |
-
"Latent (antialiased)",
|
575 |
-
46,
|
576 |
-
False,
|
577 |
-
],
|
578 |
-
]
|
579 |
-
|
580 |
-
RESOURCES = (
|
581 |
-
"""### Resources
|
582 |
-
- John6666's space has some great features you might find helpful [link](https://huggingface.co/spaces/John6666/DiffuseCraftMod).
|
583 |
-
- You can also try the image generator in Colab’s free tier, which provides free GPU [link](https://github.com/R3gm/SD_diffusers_interactive).
|
584 |
-
"""
|
585 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image_processor.py
DELETED
@@ -1,130 +0,0 @@
|
|
1 |
-
import spaces
|
2 |
-
import gradio as gr
|
3 |
-
from stablepy import Preprocessor
|
4 |
-
|
5 |
-
PREPROCESSOR_TASKS_LIST = [
|
6 |
-
"Canny",
|
7 |
-
"Openpose",
|
8 |
-
"DPT",
|
9 |
-
"Midas",
|
10 |
-
"ZoeDepth",
|
11 |
-
"DepthAnything",
|
12 |
-
"HED",
|
13 |
-
"PidiNet",
|
14 |
-
"TEED",
|
15 |
-
"Lineart",
|
16 |
-
"LineartAnime",
|
17 |
-
"Anyline",
|
18 |
-
"Lineart standard",
|
19 |
-
"SegFormer",
|
20 |
-
"UPerNet",
|
21 |
-
"ContentShuffle",
|
22 |
-
"Recolor",
|
23 |
-
"Blur",
|
24 |
-
"MLSD",
|
25 |
-
"NormalBae",
|
26 |
-
]
|
27 |
-
|
28 |
-
preprocessor = Preprocessor()
|
29 |
-
|
30 |
-
|
31 |
-
def process_inputs(
|
32 |
-
image,
|
33 |
-
name,
|
34 |
-
resolution,
|
35 |
-
precessor_resolution,
|
36 |
-
low_threshold,
|
37 |
-
high_threshold,
|
38 |
-
value_threshod,
|
39 |
-
distance_threshold,
|
40 |
-
recolor_mode,
|
41 |
-
recolor_gamma_correction,
|
42 |
-
blur_k_size,
|
43 |
-
pre_openpose_extra,
|
44 |
-
hed_scribble,
|
45 |
-
pre_pidinet_safe,
|
46 |
-
pre_lineart_coarse,
|
47 |
-
use_cuda,
|
48 |
-
):
|
49 |
-
if not image:
|
50 |
-
raise ValueError("To use this, simply upload an image.")
|
51 |
-
|
52 |
-
preprocessor.load(name, False)
|
53 |
-
|
54 |
-
params = dict(
|
55 |
-
image_resolution=resolution,
|
56 |
-
detect_resolution=precessor_resolution,
|
57 |
-
low_threshold=low_threshold,
|
58 |
-
high_threshold=high_threshold,
|
59 |
-
thr_v=value_threshod,
|
60 |
-
thr_d=distance_threshold,
|
61 |
-
mode=recolor_mode,
|
62 |
-
gamma_correction=recolor_gamma_correction,
|
63 |
-
blur_sigma=blur_k_size,
|
64 |
-
hand_and_face=pre_openpose_extra,
|
65 |
-
scribble=hed_scribble,
|
66 |
-
safe=pre_pidinet_safe,
|
67 |
-
coarse=pre_lineart_coarse,
|
68 |
-
)
|
69 |
-
|
70 |
-
if use_cuda:
|
71 |
-
@spaces.GPU(duration=15)
|
72 |
-
def wrapped_func():
|
73 |
-
preprocessor.to("cuda")
|
74 |
-
return preprocessor(image, **params)
|
75 |
-
return wrapped_func()
|
76 |
-
|
77 |
-
return preprocessor(image, **params)
|
78 |
-
|
79 |
-
|
80 |
-
def preprocessor_tab():
|
81 |
-
with gr.Row():
|
82 |
-
with gr.Column():
|
83 |
-
pre_image = gr.Image(label="Image", type="pil", sources=["upload"])
|
84 |
-
pre_options = gr.Dropdown(label="Preprocessor", choices=PREPROCESSOR_TASKS_LIST, value=PREPROCESSOR_TASKS_LIST[0])
|
85 |
-
pre_img_resolution = gr.Slider(
|
86 |
-
minimum=64, maximum=4096, step=64, value=1024, label="Image Resolution",
|
87 |
-
info="The maximum proportional size of the generated image based on the uploaded image."
|
88 |
-
)
|
89 |
-
pre_start = gr.Button(value="PROCESS IMAGE", variant="primary")
|
90 |
-
with gr.Accordion("Advanced Settings", open=False):
|
91 |
-
with gr.Column():
|
92 |
-
pre_processor_resolution = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution")
|
93 |
-
pre_low_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold")
|
94 |
-
pre_high_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold")
|
95 |
-
pre_value_threshold = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="'MLSD' Hough value threshold")
|
96 |
-
pre_distance_threshold = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="'MLSD' Hough distance threshold")
|
97 |
-
pre_recolor_mode = gr.Dropdown(label="'RECOLOR' mode", choices=["luminance", "intensity"], value="luminance")
|
98 |
-
pre_recolor_gamma_correction = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction")
|
99 |
-
pre_blur_k_size = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'BLUR' sigma")
|
100 |
-
pre_openpose_extra = gr.Checkbox(value=True, label="'OPENPOSE' face and hand")
|
101 |
-
pre_hed_scribble = gr.Checkbox(value=False, label="'HED' scribble")
|
102 |
-
pre_pidinet_safe = gr.Checkbox(value=False, label="'PIDINET' safe")
|
103 |
-
pre_lineart_coarse = gr.Checkbox(value=False, label="'LINEART' coarse")
|
104 |
-
pre_use_cuda = gr.Checkbox(value=False, label="Use CUDA")
|
105 |
-
|
106 |
-
with gr.Column():
|
107 |
-
pre_result = gr.Image(label="Result", type="pil", interactive=False, format="png")
|
108 |
-
|
109 |
-
pre_start.click(
|
110 |
-
fn=process_inputs,
|
111 |
-
inputs=[
|
112 |
-
pre_image,
|
113 |
-
pre_options,
|
114 |
-
pre_img_resolution,
|
115 |
-
pre_processor_resolution,
|
116 |
-
pre_low_threshold,
|
117 |
-
pre_high_threshold,
|
118 |
-
pre_value_threshold,
|
119 |
-
pre_distance_threshold,
|
120 |
-
pre_recolor_mode,
|
121 |
-
pre_recolor_gamma_correction,
|
122 |
-
pre_blur_k_size,
|
123 |
-
pre_openpose_extra,
|
124 |
-
pre_hed_scribble,
|
125 |
-
pre_pidinet_safe,
|
126 |
-
pre_lineart_coarse,
|
127 |
-
pre_use_cuda,
|
128 |
-
],
|
129 |
-
outputs=[pre_result],
|
130 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,7 +1,4 @@
|
|
1 |
-
stablepy
|
2 |
torch==2.2.0
|
3 |
gdown
|
4 |
-
opencv-python
|
5 |
-
unidecode
|
6 |
-
pydantic==2.10.6
|
7 |
-
huggingface_hub==0.29.3
|
|
|
1 |
+
git+https://github.com/R3gm/stablepy.git@flux_beta
|
2 |
torch==2.2.0
|
3 |
gdown
|
4 |
+
opencv-python
|
|
|
|
|
|
utils.py
DELETED
@@ -1,485 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import gradio as gr
|
4 |
-
from constants import (
|
5 |
-
DIFFUSERS_FORMAT_LORAS,
|
6 |
-
CIVITAI_API_KEY,
|
7 |
-
HF_TOKEN,
|
8 |
-
MODEL_TYPE_CLASS,
|
9 |
-
DIRECTORY_LORAS,
|
10 |
-
DIRECTORY_MODELS,
|
11 |
-
DIFFUSECRAFT_CHECKPOINT_NAME,
|
12 |
-
CACHE_HF,
|
13 |
-
STORAGE_ROOT,
|
14 |
-
)
|
15 |
-
from huggingface_hub import HfApi
|
16 |
-
from huggingface_hub import snapshot_download
|
17 |
-
from diffusers import DiffusionPipeline
|
18 |
-
from huggingface_hub import model_info as model_info_data
|
19 |
-
from diffusers.pipelines.pipeline_loading_utils import variant_compatible_siblings
|
20 |
-
from stablepy.diffusers_vanilla.utils import checkpoint_model_type
|
21 |
-
from pathlib import PosixPath
|
22 |
-
from unidecode import unidecode
|
23 |
-
import urllib.parse
|
24 |
-
import copy
|
25 |
-
import requests
|
26 |
-
from requests.adapters import HTTPAdapter
|
27 |
-
from urllib3.util import Retry
|
28 |
-
import shutil
|
29 |
-
import subprocess
|
30 |
-
|
31 |
-
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'
|
32 |
-
|
33 |
-
|
34 |
-
def request_json_data(url):
|
35 |
-
model_version_id = url.split('/')[-1]
|
36 |
-
if "?modelVersionId=" in model_version_id:
|
37 |
-
match = re.search(r'modelVersionId=(\d+)', url)
|
38 |
-
model_version_id = match.group(1)
|
39 |
-
|
40 |
-
endpoint_url = f"https://civitai.com/api/v1/model-versions/{model_version_id}"
|
41 |
-
|
42 |
-
params = {}
|
43 |
-
headers = {'User-Agent': USER_AGENT, 'content-type': 'application/json'}
|
44 |
-
session = requests.Session()
|
45 |
-
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
|
46 |
-
session.mount("https://", HTTPAdapter(max_retries=retries))
|
47 |
-
|
48 |
-
try:
|
49 |
-
result = session.get(endpoint_url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
|
50 |
-
result.raise_for_status()
|
51 |
-
json_data = result.json()
|
52 |
-
return json_data if json_data else None
|
53 |
-
except Exception as e:
|
54 |
-
print(f"Error: {e}")
|
55 |
-
return None
|
56 |
-
|
57 |
-
|
58 |
-
class ModelInformation:
|
59 |
-
def __init__(self, json_data):
|
60 |
-
self.model_version_id = json_data.get("id", "")
|
61 |
-
self.model_id = json_data.get("modelId", "")
|
62 |
-
self.download_url = json_data.get("downloadUrl", "")
|
63 |
-
self.model_url = f"https://civitai.com/models/{self.model_id}?modelVersionId={self.model_version_id}"
|
64 |
-
self.filename_url = next(
|
65 |
-
(v.get("name", "") for v in json_data.get("files", []) if str(self.model_version_id) in v.get("downloadUrl", "") and v.get("type", "Model") == "Model"), ""
|
66 |
-
)
|
67 |
-
self.filename_url = self.filename_url if self.filename_url else ""
|
68 |
-
self.description = json_data.get("description", "")
|
69 |
-
if self.description is None: self.description = ""
|
70 |
-
self.model_name = json_data.get("model", {}).get("name", "")
|
71 |
-
self.model_type = json_data.get("model", {}).get("type", "")
|
72 |
-
self.nsfw = json_data.get("model", {}).get("nsfw", False)
|
73 |
-
self.poi = json_data.get("model", {}).get("poi", False)
|
74 |
-
self.images = [img.get("url", "") for img in json_data.get("images", [])]
|
75 |
-
self.example_prompt = json_data.get("trainedWords", [""])[0] if json_data.get("trainedWords") else ""
|
76 |
-
self.original_json = copy.deepcopy(json_data)
|
77 |
-
|
78 |
-
|
79 |
-
def retrieve_model_info(url):
|
80 |
-
json_data = request_json_data(url)
|
81 |
-
if not json_data:
|
82 |
-
return None
|
83 |
-
model_descriptor = ModelInformation(json_data)
|
84 |
-
return model_descriptor
|
85 |
-
|
86 |
-
|
87 |
-
def download_things(directory, url, hf_token="", civitai_api_key="", romanize=False):
|
88 |
-
url = url.strip()
|
89 |
-
downloaded_file_path = None
|
90 |
-
|
91 |
-
if "drive.google.com" in url:
|
92 |
-
original_dir = os.getcwd()
|
93 |
-
os.chdir(directory)
|
94 |
-
os.system(f"gdown --fuzzy {url}")
|
95 |
-
os.chdir(original_dir)
|
96 |
-
elif "huggingface.co" in url:
|
97 |
-
url = url.replace("?download=true", "")
|
98 |
-
# url = urllib.parse.quote(url, safe=':/') # fix encoding
|
99 |
-
if "/blob/" in url:
|
100 |
-
url = url.replace("/blob/", "/resolve/")
|
101 |
-
user_header = f'"Authorization: Bearer {hf_token}"'
|
102 |
-
|
103 |
-
filename = unidecode(url.split('/')[-1]) if romanize else url.split('/')[-1]
|
104 |
-
|
105 |
-
if hf_token:
|
106 |
-
os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {filename}")
|
107 |
-
else:
|
108 |
-
os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {filename}")
|
109 |
-
|
110 |
-
downloaded_file_path = os.path.join(directory, filename)
|
111 |
-
|
112 |
-
elif "civitai.com" in url:
|
113 |
-
|
114 |
-
if not civitai_api_key:
|
115 |
-
print("\033[91mYou need an API key to download Civitai models.\033[0m")
|
116 |
-
|
117 |
-
model_profile = retrieve_model_info(url)
|
118 |
-
if (
|
119 |
-
model_profile is not None
|
120 |
-
and model_profile.download_url
|
121 |
-
and model_profile.filename_url
|
122 |
-
):
|
123 |
-
url = model_profile.download_url
|
124 |
-
filename = unidecode(model_profile.filename_url) if romanize else model_profile.filename_url
|
125 |
-
else:
|
126 |
-
if "?" in url:
|
127 |
-
url = url.split("?")[0]
|
128 |
-
filename = ""
|
129 |
-
|
130 |
-
url_dl = url + f"?token={civitai_api_key}"
|
131 |
-
print(f"Filename: {filename}")
|
132 |
-
|
133 |
-
param_filename = ""
|
134 |
-
if filename:
|
135 |
-
param_filename = f"-o '{filename}'"
|
136 |
-
|
137 |
-
aria2_command = (
|
138 |
-
f'aria2c --console-log-level=error --summary-interval=10 -c -x 16 '
|
139 |
-
f'-k 1M -s 16 -d "{directory}" {param_filename} "{url_dl}"'
|
140 |
-
)
|
141 |
-
os.system(aria2_command)
|
142 |
-
|
143 |
-
if param_filename and os.path.exists(os.path.join(directory, filename)):
|
144 |
-
downloaded_file_path = os.path.join(directory, filename)
|
145 |
-
|
146 |
-
# # PLAN B
|
147 |
-
# # Follow the redirect to get the actual download URL
|
148 |
-
# curl_command = (
|
149 |
-
# f'curl -L -sI --connect-timeout 5 --max-time 5 '
|
150 |
-
# f'-H "Content-Type: application/json" '
|
151 |
-
# f'-H "Authorization: Bearer {civitai_api_key}" "{url}"'
|
152 |
-
# )
|
153 |
-
|
154 |
-
# headers = os.popen(curl_command).read()
|
155 |
-
|
156 |
-
# # Look for the redirected "Location" URL
|
157 |
-
# location_match = re.search(r'location: (.+)', headers, re.IGNORECASE)
|
158 |
-
|
159 |
-
# if location_match:
|
160 |
-
# redirect_url = location_match.group(1).strip()
|
161 |
-
|
162 |
-
# # Extract the filename from the redirect URL's "Content-Disposition"
|
163 |
-
# filename_match = re.search(r'filename%3D%22(.+?)%22', redirect_url)
|
164 |
-
# if filename_match:
|
165 |
-
# encoded_filename = filename_match.group(1)
|
166 |
-
# # Decode the URL-encoded filename
|
167 |
-
# decoded_filename = urllib.parse.unquote(encoded_filename)
|
168 |
-
|
169 |
-
# filename = unidecode(decoded_filename) if romanize else decoded_filename
|
170 |
-
# print(f"Filename: {filename}")
|
171 |
-
|
172 |
-
# aria2_command = (
|
173 |
-
# f'aria2c --console-log-level=error --summary-interval=10 -c -x 16 '
|
174 |
-
# f'-k 1M -s 16 -d "{directory}" -o "{filename}" "{redirect_url}"'
|
175 |
-
# )
|
176 |
-
# return_code = os.system(aria2_command)
|
177 |
-
|
178 |
-
# # if return_code != 0:
|
179 |
-
# # raise RuntimeError(f"Failed to download file: {filename}. Error code: {return_code}")
|
180 |
-
# downloaded_file_path = os.path.join(directory, filename)
|
181 |
-
# if not os.path.exists(downloaded_file_path):
|
182 |
-
# downloaded_file_path = None
|
183 |
-
|
184 |
-
# if not downloaded_file_path:
|
185 |
-
# # Old method
|
186 |
-
# if "?" in url:
|
187 |
-
# url = url.split("?")[0]
|
188 |
-
# url = url + f"?token={civitai_api_key}"
|
189 |
-
# os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
190 |
-
|
191 |
-
else:
|
192 |
-
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
193 |
-
|
194 |
-
return downloaded_file_path
|
195 |
-
|
196 |
-
|
197 |
-
def get_model_list(directory_path):
|
198 |
-
model_list = []
|
199 |
-
valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'}
|
200 |
-
|
201 |
-
for filename in os.listdir(directory_path):
|
202 |
-
if os.path.splitext(filename)[1] in valid_extensions:
|
203 |
-
# name_without_extension = os.path.splitext(filename)[0]
|
204 |
-
file_path = os.path.join(directory_path, filename)
|
205 |
-
# model_list.append((name_without_extension, file_path))
|
206 |
-
model_list.append(file_path)
|
207 |
-
print('\033[34mFILE: ' + file_path + '\033[0m')
|
208 |
-
return model_list
|
209 |
-
|
210 |
-
|
211 |
-
def extract_parameters(input_string):
|
212 |
-
parameters = {}
|
213 |
-
input_string = input_string.replace("\n", "")
|
214 |
-
|
215 |
-
if "Negative prompt:" not in input_string:
|
216 |
-
if "Steps:" in input_string:
|
217 |
-
input_string = input_string.replace("Steps:", "Negative prompt: Steps:")
|
218 |
-
else:
|
219 |
-
print("Invalid metadata")
|
220 |
-
parameters["prompt"] = input_string
|
221 |
-
return parameters
|
222 |
-
|
223 |
-
parm = input_string.split("Negative prompt:")
|
224 |
-
parameters["prompt"] = parm[0].strip()
|
225 |
-
if "Steps:" not in parm[1]:
|
226 |
-
print("Steps not detected")
|
227 |
-
parameters["neg_prompt"] = parm[1].strip()
|
228 |
-
return parameters
|
229 |
-
parm = parm[1].split("Steps:")
|
230 |
-
parameters["neg_prompt"] = parm[0].strip()
|
231 |
-
input_string = "Steps:" + parm[1]
|
232 |
-
|
233 |
-
# Extracting Steps
|
234 |
-
steps_match = re.search(r'Steps: (\d+)', input_string)
|
235 |
-
if steps_match:
|
236 |
-
parameters['Steps'] = int(steps_match.group(1))
|
237 |
-
|
238 |
-
# Extracting Size
|
239 |
-
size_match = re.search(r'Size: (\d+x\d+)', input_string)
|
240 |
-
if size_match:
|
241 |
-
parameters['Size'] = size_match.group(1)
|
242 |
-
width, height = map(int, parameters['Size'].split('x'))
|
243 |
-
parameters['width'] = width
|
244 |
-
parameters['height'] = height
|
245 |
-
|
246 |
-
# Extracting other parameters
|
247 |
-
other_parameters = re.findall(r'([^,:]+): (.*?)(?=, [^,:]+:|$)', input_string)
|
248 |
-
for param in other_parameters:
|
249 |
-
parameters[param[0].strip()] = param[1].strip('"')
|
250 |
-
|
251 |
-
return parameters
|
252 |
-
|
253 |
-
|
254 |
-
def get_my_lora(link_url, romanize):
|
255 |
-
l_name = ""
|
256 |
-
for url in [url.strip() for url in link_url.split(',')]:
|
257 |
-
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
258 |
-
l_name = download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY, romanize)
|
259 |
-
new_lora_model_list = get_model_list(DIRECTORY_LORAS)
|
260 |
-
new_lora_model_list.insert(0, "None")
|
261 |
-
new_lora_model_list = new_lora_model_list + DIFFUSERS_FORMAT_LORAS
|
262 |
-
msg_lora = "Downloaded"
|
263 |
-
if l_name:
|
264 |
-
msg_lora += f": <b>{l_name}</b>"
|
265 |
-
print(msg_lora)
|
266 |
-
|
267 |
-
return gr.update(
|
268 |
-
choices=new_lora_model_list
|
269 |
-
), gr.update(
|
270 |
-
choices=new_lora_model_list
|
271 |
-
), gr.update(
|
272 |
-
choices=new_lora_model_list
|
273 |
-
), gr.update(
|
274 |
-
choices=new_lora_model_list
|
275 |
-
), gr.update(
|
276 |
-
choices=new_lora_model_list
|
277 |
-
), gr.update(
|
278 |
-
choices=new_lora_model_list
|
279 |
-
), gr.update(
|
280 |
-
choices=new_lora_model_list
|
281 |
-
), gr.update(
|
282 |
-
value=msg_lora
|
283 |
-
)
|
284 |
-
|
285 |
-
|
286 |
-
def info_html(json_data, title, subtitle):
|
287 |
-
return f"""
|
288 |
-
<div style='padding: 0; border-radius: 10px;'>
|
289 |
-
<p style='margin: 0; font-weight: bold;'>{title}</p>
|
290 |
-
<details>
|
291 |
-
<summary>Details</summary>
|
292 |
-
<p style='margin: 0; font-weight: bold;'>{subtitle}</p>
|
293 |
-
</details>
|
294 |
-
</div>
|
295 |
-
"""
|
296 |
-
|
297 |
-
|
298 |
-
def get_model_type(repo_id: str):
|
299 |
-
api = HfApi(token=os.environ.get("HF_TOKEN")) # if use private or gated model
|
300 |
-
default = "SD 1.5"
|
301 |
-
try:
|
302 |
-
if os.path.exists(repo_id):
|
303 |
-
tag, _, _, _ = checkpoint_model_type(repo_id)
|
304 |
-
return DIFFUSECRAFT_CHECKPOINT_NAME[tag]
|
305 |
-
else:
|
306 |
-
model = api.model_info(repo_id=repo_id, timeout=5.0)
|
307 |
-
tags = model.tags
|
308 |
-
for tag in tags:
|
309 |
-
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
|
310 |
-
|
311 |
-
except Exception:
|
312 |
-
return default
|
313 |
-
return default
|
314 |
-
|
315 |
-
|
316 |
-
def restart_space(repo_id: str, factory_reboot: bool):
|
317 |
-
api = HfApi(token=os.environ.get("HF_TOKEN"))
|
318 |
-
try:
|
319 |
-
runtime = api.get_space_runtime(repo_id=repo_id)
|
320 |
-
if runtime.stage == "RUNNING":
|
321 |
-
api.restart_space(repo_id=repo_id, factory_reboot=factory_reboot)
|
322 |
-
print(f"Restarting space: {repo_id}")
|
323 |
-
else:
|
324 |
-
print(f"Space {repo_id} is in stage: {runtime.stage}")
|
325 |
-
except Exception as e:
|
326 |
-
print(e)
|
327 |
-
|
328 |
-
|
329 |
-
def extract_exif_data(image):
|
330 |
-
if image is None:
|
331 |
-
return ""
|
332 |
-
|
333 |
-
try:
|
334 |
-
metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']
|
335 |
-
|
336 |
-
for key in metadata_keys:
|
337 |
-
if key in image.info:
|
338 |
-
return image.info[key]
|
339 |
-
|
340 |
-
return str(image.info)
|
341 |
-
|
342 |
-
except Exception as e:
|
343 |
-
return f"Error extracting metadata: {str(e)}"
|
344 |
-
|
345 |
-
|
346 |
-
def create_mask_now(img, invert):
|
347 |
-
import numpy as np
|
348 |
-
import time
|
349 |
-
|
350 |
-
time.sleep(0.5)
|
351 |
-
|
352 |
-
transparent_image = img["layers"][0]
|
353 |
-
|
354 |
-
# Extract the alpha channel
|
355 |
-
alpha_channel = np.array(transparent_image)[:, :, 3]
|
356 |
-
|
357 |
-
# Create a binary mask by thresholding the alpha channel
|
358 |
-
binary_mask = alpha_channel > 1
|
359 |
-
|
360 |
-
if invert:
|
361 |
-
print("Invert")
|
362 |
-
# Invert the binary mask so that the drawn shape is white and the rest is black
|
363 |
-
binary_mask = np.invert(binary_mask)
|
364 |
-
|
365 |
-
# Convert the binary mask to a 3-channel RGB mask
|
366 |
-
rgb_mask = np.stack((binary_mask,) * 3, axis=-1)
|
367 |
-
|
368 |
-
# Convert the mask to uint8
|
369 |
-
rgb_mask = rgb_mask.astype(np.uint8) * 255
|
370 |
-
|
371 |
-
return img["background"], rgb_mask
|
372 |
-
|
373 |
-
|
374 |
-
def download_diffuser_repo(repo_name: str, model_type: str, revision: str = "main", token=True):
|
375 |
-
|
376 |
-
variant = None
|
377 |
-
if token is True and not os.environ.get("HF_TOKEN"):
|
378 |
-
token = None
|
379 |
-
|
380 |
-
if model_type == "SDXL":
|
381 |
-
info = model_info_data(
|
382 |
-
repo_name,
|
383 |
-
token=token,
|
384 |
-
revision=revision,
|
385 |
-
timeout=5.0,
|
386 |
-
)
|
387 |
-
|
388 |
-
filenames = {sibling.rfilename for sibling in info.siblings}
|
389 |
-
model_filenames, variant_filenames = variant_compatible_siblings(
|
390 |
-
filenames, variant="fp16"
|
391 |
-
)
|
392 |
-
|
393 |
-
if len(variant_filenames):
|
394 |
-
variant = "fp16"
|
395 |
-
|
396 |
-
if model_type == "FLUX":
|
397 |
-
cached_folder = snapshot_download(
|
398 |
-
repo_id=repo_name,
|
399 |
-
allow_patterns="transformer/*"
|
400 |
-
)
|
401 |
-
else:
|
402 |
-
cached_folder = DiffusionPipeline.download(
|
403 |
-
pretrained_model_name=repo_name,
|
404 |
-
force_download=False,
|
405 |
-
token=token,
|
406 |
-
revision=revision,
|
407 |
-
# mirror="https://hf-mirror.com",
|
408 |
-
variant=variant,
|
409 |
-
use_safetensors=True,
|
410 |
-
trust_remote_code=False,
|
411 |
-
timeout=5.0,
|
412 |
-
)
|
413 |
-
|
414 |
-
if isinstance(cached_folder, PosixPath):
|
415 |
-
cached_folder = cached_folder.as_posix()
|
416 |
-
|
417 |
-
# Task model
|
418 |
-
# from huggingface_hub import hf_hub_download
|
419 |
-
# hf_hub_download(
|
420 |
-
# task_model,
|
421 |
-
# filename="diffusion_pytorch_model.safetensors", # fix fp16 variant
|
422 |
-
# )
|
423 |
-
|
424 |
-
return cached_folder
|
425 |
-
|
426 |
-
|
427 |
-
def get_folder_size_gb(folder_path):
|
428 |
-
result = subprocess.run(["du", "-s", folder_path], capture_output=True, text=True)
|
429 |
-
|
430 |
-
total_size_kb = int(result.stdout.split()[0])
|
431 |
-
total_size_gb = total_size_kb / (1024 ** 2)
|
432 |
-
|
433 |
-
return total_size_gb
|
434 |
-
|
435 |
-
|
436 |
-
def get_used_storage_gb():
|
437 |
-
try:
|
438 |
-
used_gb = get_folder_size_gb(STORAGE_ROOT)
|
439 |
-
print(f"Used Storage: {used_gb:.2f} GB")
|
440 |
-
except Exception as e:
|
441 |
-
used_gb = 999
|
442 |
-
print(f"Error while retrieving the used storage: {e}.")
|
443 |
-
|
444 |
-
return used_gb
|
445 |
-
|
446 |
-
|
447 |
-
def delete_model(removal_candidate):
|
448 |
-
print(f"Removing: {removal_candidate}")
|
449 |
-
|
450 |
-
if os.path.exists(removal_candidate):
|
451 |
-
os.remove(removal_candidate)
|
452 |
-
else:
|
453 |
-
diffusers_model = f"{CACHE_HF}{DIRECTORY_MODELS}--{removal_candidate.replace('/', '--')}"
|
454 |
-
if os.path.isdir(diffusers_model):
|
455 |
-
shutil.rmtree(diffusers_model)
|
456 |
-
|
457 |
-
|
458 |
-
def progress_step_bar(step, total):
|
459 |
-
# Calculate the percentage for the progress bar width
|
460 |
-
percentage = min(100, ((step / total) * 100))
|
461 |
-
|
462 |
-
return f"""
|
463 |
-
<div style="position: relative; width: 100%; background-color: gray; border-radius: 5px; overflow: hidden;">
|
464 |
-
<div style="width: {percentage}%; height: 17px; background-color: #800080; transition: width 0.5s;"></div>
|
465 |
-
<div style="position: absolute; width: 100%; text-align: center; color: white; top: 0; line-height: 19px; font-size: 13px;">
|
466 |
-
{int(percentage)}%
|
467 |
-
</div>
|
468 |
-
</div>
|
469 |
-
"""
|
470 |
-
|
471 |
-
|
472 |
-
def html_template_message(msg):
|
473 |
-
return f"""
|
474 |
-
<div style="position: relative; width: 100%; background-color: gray; border-radius: 5px; overflow: hidden;">
|
475 |
-
<div style="width: 0%; height: 17px; background-color: #800080; transition: width 0.5s;"></div>
|
476 |
-
<div style="position: absolute; width: 100%; text-align: center; color: white; top: 0; line-height: 19px; font-size: 14px; font-weight: bold; text-shadow: 1px 1px 2px black;">
|
477 |
-
{msg}
|
478 |
-
</div>
|
479 |
-
</div>
|
480 |
-
"""
|
481 |
-
|
482 |
-
|
483 |
-
def escape_html(text):
|
484 |
-
"""Escapes HTML special characters in the input text."""
|
485 |
-
return text.replace("<", "<").replace(">", ">").replace("\n", "<br>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|