Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.init as init | |
import logging | |
from ddiffusers.models.lora import LoRALinearLayer | |
from ddiffusers.models.attention import Attention | |
from ddiffusers.utils import USE_PEFT_BACKEND | |
from typing import Optional | |
from einops import rearrange | |
logger = logging.getLogger(__name__) | |
class AttnProcessor: | |
r""" | |
Default processor for performing attention-related computations. | |
""" | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
temb: Optional[torch.FloatTensor] = None, | |
scale: float = 1.0, | |
camera_feature=None | |
) -> torch.Tensor: | |
residual = hidden_states | |
args = () if USE_PEFT_BACKEND else (scale,) | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states, *args) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states, *args) | |
value = attn.to_v(encoder_hidden_states, *args) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states, *args) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class LoRAAttnProcessor(nn.Module): | |
r""" | |
Default processor for performing attention-related computations. | |
""" | |
def __init__( | |
self, | |
hidden_size=None, | |
cross_attention_dim=None, | |
rank=4, | |
network_alpha=None, | |
lora_scale=1.0, | |
): | |
super().__init__() | |
self.rank = rank | |
self.lora_scale = lora_scale | |
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) | |
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) | |
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) | |
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
camera_feature=None, | |
scale=None | |
): | |
lora_scale = self.lora_scale if scale is None else scale | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) + lora_scale * self.to_q_lora(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) + lora_scale * self.to_k_lora(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) + lora_scale * self.to_v_lora(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) + lora_scale * self.to_out_lora(hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class CameraAdaptorAttnProcessor(nn.Module): | |
def __init__(self, | |
hidden_size, # dimension of hidden state | |
camera_feature_dim=None, # dimension of the camera feature | |
cross_attention_dim=None, # dimension of the text embedding | |
query_condition=False, | |
key_value_condition=False, | |
scale=1.0): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.camera_feature_dim = camera_feature_dim | |
self.cross_attention_dim = cross_attention_dim | |
self.scale = scale | |
self.query_condition = query_condition | |
self.key_value_condition = key_value_condition | |
assert hidden_size == camera_feature_dim | |
if self.query_condition and self.key_value_condition: | |
self.qkv_merge = nn.Linear(hidden_size, hidden_size) | |
init.zeros_(self.qkv_merge.weight) | |
init.zeros_(self.qkv_merge.bias) | |
elif self.query_condition: | |
self.q_merge = nn.Linear(hidden_size, hidden_size) | |
init.zeros_(self.q_merge.weight) | |
init.zeros_(self.q_merge.bias) | |
else: | |
self.kv_merge = nn.Linear(hidden_size, hidden_size) | |
init.zeros_(self.kv_merge.weight) | |
init.zeros_(self.kv_merge.bias) | |
def forward(self, | |
attn, | |
hidden_states, | |
camera_feature, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
scale=None,): | |
assert camera_feature is not None | |
camera_embedding_scale = (scale or self.scale) | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
if hidden_states.dim == 5: | |
hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) (h w) c') | |
elif hidden_states.ndim == 4: | |
hidden_states = rearrange(hidden_states, 'b c h w -> b (h w) c') | |
else: | |
assert hidden_states.ndim == 3 | |
if self.query_condition and self.key_value_condition: | |
assert encoder_hidden_states is None | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
if encoder_hidden_states.ndim == 5: | |
encoder_hidden_states = rearrange(encoder_hidden_states, 'b c f h w -> (b f) (h w) c') | |
elif encoder_hidden_states.ndim == 4: | |
encoder_hidden_states = rearrange(encoder_hidden_states, 'b c h w -> b (h w) c') | |
else: | |
assert encoder_hidden_states.ndim == 3 | |
if camera_feature.ndim == 5: | |
camera_feature = rearrange(camera_feature, "b c f h w -> (b f) (h w) c") | |
elif camera_feature.ndim == 4: | |
camera_feature = rearrange(camera_feature, "b c h w -> b (h w) c") | |
else: | |
assert camera_feature.ndim == 3 | |
batch_size, ehs_sequence_length, _ = encoder_hidden_states.shape | |
attention_mask = attn.prepare_attention_mask(attention_mask, ehs_sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
if attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
if self.query_condition and self.key_value_condition: # only self attention | |
query_hidden_state = self.qkv_merge(hidden_states + camera_feature) * camera_embedding_scale + hidden_states | |
key_value_hidden_state = query_hidden_state | |
elif self.query_condition: | |
query_hidden_state = self.q_merge(hidden_states + camera_feature) * camera_embedding_scale + hidden_states | |
key_value_hidden_state = encoder_hidden_states | |
else: | |
key_value_hidden_state = self.kv_merge(encoder_hidden_states + camera_feature) * camera_embedding_scale + encoder_hidden_states | |
query_hidden_state = hidden_states | |
# original attention | |
query = attn.to_q(query_hidden_state) | |
key = attn.to_k(key_value_hidden_state) | |
value = attn.to_v(key_value_hidden_state) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class LORACameraAdaptorAttnProcessor(nn.Module): | |
def __init__(self, | |
hidden_size, # dimension of hidden state | |
camera_feature_dim=None, # dimension of the camera feature | |
cross_attention_dim=None, # dimension of the text embedding | |
query_condition=False, | |
key_value_condition=False, | |
scale=1.0, | |
# lora keywords | |
rank=4, | |
network_alpha=None, | |
lora_scale=1.0): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.camera_feature_dim = camera_feature_dim | |
self.cross_attention_dim = cross_attention_dim | |
self.scale = scale | |
self.query_condition = query_condition | |
self.key_value_condition = key_value_condition | |
assert hidden_size == camera_feature_dim | |
if self.query_condition and self.key_value_condition: | |
self.qkv_merge = nn.Linear(hidden_size, hidden_size) | |
init.zeros_(self.qkv_merge.weight) | |
init.zeros_(self.qkv_merge.bias) | |
elif self.query_condition: | |
self.q_merge = nn.Linear(hidden_size, hidden_size) | |
init.zeros_(self.q_merge.weight) | |
init.zeros_(self.q_merge.bias) | |
else: | |
self.kv_merge = nn.Linear(hidden_size, hidden_size) | |
init.zeros_(self.kv_merge.weight) | |
init.zeros_(self.kv_merge.bias) | |
# lora | |
self.rank = rank | |
self.lora_scale = lora_scale | |
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) | |
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) | |
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha) | |
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha) | |
def __call__(self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
scale=1.0, | |
camera_feature=None, | |
): | |
assert camera_feature is not None | |
lora_scale = self.lora_scale if scale is None else scale | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
if hidden_states.dim == 5: | |
hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) (h w) c') | |
elif hidden_states.ndim == 4: | |
hidden_states = rearrange(hidden_states, 'b c h w -> b (h w) c') | |
else: | |
assert hidden_states.ndim == 3 | |
if self.query_condition and self.key_value_condition: | |
assert encoder_hidden_states is None | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
if encoder_hidden_states.ndim == 5: | |
encoder_hidden_states = rearrange(encoder_hidden_states, 'b c f h w -> (b f) (h w) c') | |
elif encoder_hidden_states.ndim == 4: | |
encoder_hidden_states = rearrange(encoder_hidden_states, 'b c h w -> b (h w) c') | |
else: | |
assert encoder_hidden_states.ndim == 3 | |
if camera_feature.ndim == 5: | |
camera_feature = rearrange(camera_feature, "b c f h w -> (b f) (h w) c") | |
elif camera_feature.ndim == 4: | |
camera_feature = rearrange(camera_feature, "b c h w -> b (h w) c") | |
else: | |
assert camera_feature.ndim == 3 | |
batch_size, ehs_sequence_length, _ = encoder_hidden_states.shape | |
attention_mask = attn.prepare_attention_mask(attention_mask, ehs_sequence_length, batch_size) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
if attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
if self.query_condition and self.key_value_condition: # only self attention | |
query_hidden_state = self.qkv_merge(hidden_states + camera_feature) * self.scale + hidden_states | |
key_value_hidden_state = query_hidden_state | |
elif self.query_condition: | |
query_hidden_state = self.q_merge(hidden_states + camera_feature) * self.scale + hidden_states | |
key_value_hidden_state = encoder_hidden_states | |
else: | |
key_value_hidden_state = self.kv_merge(encoder_hidden_states + camera_feature) * self.scale + encoder_hidden_states | |
query_hidden_state = hidden_states | |
# original attention | |
query = attn.to_q(query_hidden_state) + lora_scale * self.to_q_lora(query_hidden_state) | |
key = attn.to_k(key_value_hidden_state) + lora_scale * self.to_k_lora(key_value_hidden_state) | |
value = attn.to_v(key_value_hidden_state) + lora_scale * self.to_v_lora(key_value_hidden_state) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) + lora_scale * self.to_out_lora(hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |