File size: 16,684 Bytes
1ae4e5b
 
 
 
279a838
 
 
1ae4e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import torch
import torch.nn as nn
import torch.nn.init as init
import logging
from ddiffusers.models.lora import LoRALinearLayer
from ddiffusers.models.attention import Attention
from ddiffusers.utils import USE_PEFT_BACKEND
from typing import Optional

from einops import rearrange

logger = logging.getLogger(__name__)


class AttnProcessor:
    r"""
    Default processor for performing attention-related computations.
    """

    def __call__(
            self,
            attn: Attention,
            hidden_states: torch.FloatTensor,
            encoder_hidden_states: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.FloatTensor] = None,
            temb: Optional[torch.FloatTensor] = None,
            scale: float = 1.0,
            camera_feature=None
    ) -> torch.Tensor:
        residual = hidden_states

        args = () if USE_PEFT_BACKEND else (scale,)

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states, *args)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states, *args)
        value = attn.to_v(encoder_hidden_states, *args)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states, *args)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class LoRAAttnProcessor(nn.Module):
    r"""
    Default processor for performing attention-related computations.
    """

    def __init__(
            self,
            hidden_size=None,
            cross_attention_dim=None,
            rank=4,
            network_alpha=None,
            lora_scale=1.0,
    ):
        super().__init__()

        self.rank = rank
        self.lora_scale = lora_scale

        self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)

    def __call__(
            self,
            attn,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None,
            temb=None,
            camera_feature=None,
            scale=None
    ):
        lora_scale = self.lora_scale if scale is None else scale
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states) + lora_scale * self.to_q_lora(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states) + lora_scale * self.to_k_lora(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states) + lora_scale * self.to_v_lora(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states) + lora_scale * self.to_out_lora(hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class CameraAdaptorAttnProcessor(nn.Module):
    def __init__(self,
                 hidden_size,  # dimension of hidden state
                 camera_feature_dim=None,  # dimension of the camera feature
                 cross_attention_dim=None,  # dimension of the text embedding
                 query_condition=False,
                 key_value_condition=False,
                 scale=1.0):
        super().__init__()

        self.hidden_size = hidden_size
        self.camera_feature_dim = camera_feature_dim
        self.cross_attention_dim = cross_attention_dim
        self.scale = scale
        self.query_condition = query_condition
        self.key_value_condition = key_value_condition
        assert hidden_size == camera_feature_dim
        if self.query_condition and self.key_value_condition:
            self.qkv_merge = nn.Linear(hidden_size, hidden_size)
            init.zeros_(self.qkv_merge.weight)
            init.zeros_(self.qkv_merge.bias)
        elif self.query_condition:
            self.q_merge = nn.Linear(hidden_size, hidden_size)
            init.zeros_(self.q_merge.weight)
            init.zeros_(self.q_merge.bias)
        else:
            self.kv_merge = nn.Linear(hidden_size, hidden_size)
            init.zeros_(self.kv_merge.weight)
            init.zeros_(self.kv_merge.bias)

    def forward(self,
                attn,
                hidden_states,
                camera_feature,
                encoder_hidden_states=None,
                attention_mask=None,
                temb=None,
                scale=None,):
        assert camera_feature is not None
        camera_embedding_scale = (scale or self.scale)

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        if hidden_states.dim == 5:
            hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) (h w) c')
        elif hidden_states.ndim == 4:
            hidden_states = rearrange(hidden_states, 'b c h w -> b (h w) c')
        else:
            assert hidden_states.ndim == 3

        if self.query_condition and self.key_value_condition:
            assert encoder_hidden_states is None

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states

        if encoder_hidden_states.ndim == 5:
            encoder_hidden_states = rearrange(encoder_hidden_states, 'b c f h w -> (b f) (h w) c')
        elif encoder_hidden_states.ndim == 4:
            encoder_hidden_states = rearrange(encoder_hidden_states, 'b c h w -> b (h w) c')
        else:
            assert encoder_hidden_states.ndim == 3
        if camera_feature.ndim == 5:
            camera_feature = rearrange(camera_feature, "b c f h w -> (b f) (h w) c")
        elif camera_feature.ndim == 4:
            camera_feature = rearrange(camera_feature, "b c h w -> b (h w) c")
        else:
            assert camera_feature.ndim == 3

        batch_size, ehs_sequence_length, _ = encoder_hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, ehs_sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        if attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.query_condition and self.key_value_condition:  # only self attention
            query_hidden_state = self.qkv_merge(hidden_states + camera_feature) * camera_embedding_scale + hidden_states
            key_value_hidden_state = query_hidden_state
        elif self.query_condition:
            query_hidden_state = self.q_merge(hidden_states + camera_feature) * camera_embedding_scale + hidden_states
            key_value_hidden_state = encoder_hidden_states
        else:
            key_value_hidden_state = self.kv_merge(encoder_hidden_states + camera_feature) * camera_embedding_scale + encoder_hidden_states
            query_hidden_state = hidden_states

        # original attention
        query = attn.to_q(query_hidden_state)
        key = attn.to_k(key_value_hidden_state)
        value = attn.to_v(key_value_hidden_state)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class LORACameraAdaptorAttnProcessor(nn.Module):
    def __init__(self,
                 hidden_size,  # dimension of hidden state
                 camera_feature_dim=None,  # dimension of the camera feature
                 cross_attention_dim=None,  # dimension of the text embedding
                 query_condition=False,
                 key_value_condition=False,
                 scale=1.0,
                 # lora keywords
                 rank=4,
                 network_alpha=None,
                 lora_scale=1.0):
        super().__init__()

        self.hidden_size = hidden_size
        self.camera_feature_dim = camera_feature_dim
        self.cross_attention_dim = cross_attention_dim
        self.scale = scale
        self.query_condition = query_condition
        self.key_value_condition = key_value_condition
        assert hidden_size == camera_feature_dim
        if self.query_condition and self.key_value_condition:
            self.qkv_merge = nn.Linear(hidden_size, hidden_size)
            init.zeros_(self.qkv_merge.weight)
            init.zeros_(self.qkv_merge.bias)
        elif self.query_condition:
            self.q_merge = nn.Linear(hidden_size, hidden_size)
            init.zeros_(self.q_merge.weight)
            init.zeros_(self.q_merge.bias)
        else:
            self.kv_merge = nn.Linear(hidden_size, hidden_size)
            init.zeros_(self.kv_merge.weight)
            init.zeros_(self.kv_merge.bias)
        # lora
        self.rank = rank
        self.lora_scale = lora_scale
        self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)

    def __call__(self,
                 attn,
                 hidden_states,
                 encoder_hidden_states=None,
                 attention_mask=None,
                 temb=None,
                 scale=1.0,
                 camera_feature=None,
                 ):
        assert camera_feature is not None
        lora_scale = self.lora_scale if scale is None else scale
        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        if hidden_states.dim == 5:
            hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) (h w) c')
        elif hidden_states.ndim == 4:
            hidden_states = rearrange(hidden_states, 'b c h w -> b (h w) c')
        else:
            assert hidden_states.ndim == 3

        if self.query_condition and self.key_value_condition:
            assert encoder_hidden_states is None

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states

        if encoder_hidden_states.ndim == 5:
            encoder_hidden_states = rearrange(encoder_hidden_states, 'b c f h w -> (b f) (h w) c')
        elif encoder_hidden_states.ndim == 4:
            encoder_hidden_states = rearrange(encoder_hidden_states, 'b c h w -> b (h w) c')
        else:
            assert encoder_hidden_states.ndim == 3
        if camera_feature.ndim == 5:
            camera_feature = rearrange(camera_feature, "b c f h w -> (b f) (h w) c")
        elif camera_feature.ndim == 4:
            camera_feature = rearrange(camera_feature, "b c h w -> b (h w) c")
        else:
            assert camera_feature.ndim == 3

        batch_size, ehs_sequence_length, _ = encoder_hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, ehs_sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        if attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.query_condition and self.key_value_condition:  # only self attention
            query_hidden_state = self.qkv_merge(hidden_states + camera_feature) * self.scale + hidden_states
            key_value_hidden_state = query_hidden_state
        elif self.query_condition:
            query_hidden_state = self.q_merge(hidden_states + camera_feature) * self.scale + hidden_states
            key_value_hidden_state = encoder_hidden_states
        else:
            key_value_hidden_state = self.kv_merge(encoder_hidden_states + camera_feature) * self.scale + encoder_hidden_states
            query_hidden_state = hidden_states

        # original attention
        query = attn.to_q(query_hidden_state) + lora_scale * self.to_q_lora(query_hidden_state)
        key = attn.to_k(key_value_hidden_state) + lora_scale * self.to_k_lora(key_value_hidden_state)
        value = attn.to_v(key_value_hidden_state) + lora_scale * self.to_v_lora(key_value_hidden_state)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states) + lora_scale * self.to_out_lora(hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states