Spaces:
Running
Enhance and redesign DuckDB introductory notebook
Browse filesThis commit addresses and resolves the suggestions provided in the review, including:
- Ensuring the notebook follows the best practices outlined in the contribution guidelines.
- Removing irrelevant markdown blocks and using marimo features.
Additionally, the notebook has been completely redesigned with:
- Improved structure and flow for better readability and learning experience.
- Enhanced examples and interactive content for database connections, table creation, and data manipulation.
- Better integration of visuals using Plotly and Marimo for basic interactive analysis.
- Updated dependency management using for reproducibility.
The notebook now provides a polished and user-friendly guide to DuckDB, ensuring a high-quality learning experience for users.
- duckdb/01_getting_started.py +1531 -121
@@ -1,232 +1,1638 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import marimo
|
2 |
|
3 |
-
__generated_with = "0.
|
4 |
-
app = marimo.App(width="medium")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
@app.cell(hide_code=True)
|
8 |
-
def
|
9 |
mo.md(
|
10 |
-
"""
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
[DuckDB](https://duckdb.org/) is a high-performance, in-process analytical database management system (DBMS) designed for speed and simplicity. It's particularly well-suited for analytical query workloads, offering a robust SQL interface and efficient data processing capabilities. This document highlights key features and aspects of DuckDB relevant for a course on database systems or data analysis.
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
- In-Process: Easy integration, zero external dependencies.
|
20 |
-
- Portable: Works on various OS and architectures.
|
21 |
-
- Columnar Storage: Efficient for analytical queries.
|
22 |
-
- Vectorized Execution: Speeds up data processing.
|
23 |
-
- ACID Transactions: Ensures data integrity.
|
24 |
-
- Multi-Language APIs: Python, R, Java, etc.
|
25 |
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
- Data analysis and exploration
|
29 |
-
- Embedded analytics in applications
|
30 |
-
- ETL (Extract, Transform, Load) processes
|
31 |
-
- Data science and machine learning workflows
|
32 |
-
- Rapid prototyping of data analysis pipelines.
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
- The DuckDB Python API can be installed using pip:
|
37 |
-
```
|
38 |
-
pip install duckdb
|
39 |
-
```
|
40 |
-
- It is also possible to install DuckDB using conda:
|
41 |
-
```
|
42 |
-
conda install python-duckdb -c conda-forge.
|
43 |
-
```
|
44 |
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
return
|
49 |
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
@app.cell(hide_code=True)
|
52 |
def _(mo):
|
53 |
mo.md(
|
54 |
r"""
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
"""
|
59 |
)
|
60 |
return
|
61 |
|
62 |
|
63 |
@app.cell
|
64 |
-
def
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
|
73 |
@app.cell(hide_code=True)
|
74 |
def _(mo):
|
75 |
-
mo.md(
|
76 |
-
r"""# [2. Creating Tables](https://duckdb.org/docs/stable/sql/statements/create_table.html)"""
|
77 |
-
)
|
78 |
return
|
79 |
|
80 |
|
81 |
@app.cell
|
82 |
-
def
|
83 |
-
|
84 |
-
|
85 |
-
CREATE TABLE
|
86 |
id INTEGER,
|
87 |
-
|
88 |
-
|
89 |
-
registration_date DATE
|
90 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
"""
|
92 |
)
|
93 |
return
|
94 |
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
@app.cell(hide_code=True)
|
97 |
def _(mo):
|
98 |
mo.md(
|
99 |
-
|
|
|
|
|
|
|
100 |
)
|
101 |
return
|
102 |
|
103 |
|
104 |
@app.cell
|
105 |
-
def
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
(
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
return
|
115 |
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
@app.cell(hide_code=True)
|
118 |
def _(mo):
|
119 |
mo.md(
|
120 |
-
|
|
|
|
|
|
|
121 |
)
|
122 |
return
|
123 |
|
124 |
|
125 |
@app.cell
|
126 |
-
def
|
127 |
-
|
128 |
-
|
129 |
-
for user_row in user_results:
|
130 |
-
print(user_row)
|
131 |
-
return user_results, user_row
|
132 |
|
133 |
|
134 |
@app.cell(hide_code=True)
|
135 |
def _(mo):
|
136 |
mo.md(
|
137 |
-
|
|
|
|
|
|
|
138 |
)
|
139 |
return
|
140 |
|
141 |
|
142 |
@app.cell
|
143 |
-
def
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
)
|
|
|
|
|
153 |
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
return polars_dataframe, polars_results, polars_row
|
165 |
|
166 |
|
167 |
@app.cell(hide_code=True)
|
168 |
def _(mo):
|
169 |
mo.md(
|
170 |
-
r"""
|
|
|
|
|
|
|
171 |
)
|
172 |
return
|
173 |
|
174 |
|
175 |
@app.cell
|
176 |
-
def
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
"""
|
183 |
)
|
184 |
-
|
185 |
-
for join_row in join_results.fetchall():
|
186 |
-
print(join_row)
|
187 |
-
return join_results, join_row
|
188 |
|
189 |
|
190 |
@app.cell(hide_code=True)
|
191 |
def _(mo):
|
192 |
mo.md(
|
193 |
-
r"""
|
|
|
|
|
|
|
194 |
)
|
195 |
return
|
196 |
|
197 |
|
198 |
@app.cell
|
199 |
-
def
|
200 |
-
|
201 |
-
""
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
"""
|
205 |
-
).fetchall()
|
206 |
-
print(
|
207 |
-
f"Average Age: {aggregate_results[0][0]:.1f}, "
|
208 |
-
f"Max Age: {aggregate_results[0][1]}, "
|
209 |
-
f"Min Age: {aggregate_results[0][2]}"
|
210 |
)
|
211 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
|
214 |
@app.cell(hide_code=True)
|
215 |
def _(mo):
|
216 |
mo.md(
|
217 |
-
r"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
)
|
219 |
return
|
220 |
|
221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
@app.cell
|
223 |
-
def
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
|
232 |
@app.cell(hide_code=True)
|
@@ -234,8 +1640,12 @@ def _():
|
|
234 |
import marimo as mo
|
235 |
import duckdb
|
236 |
import polars as pl
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
|
|
239 |
|
240 |
|
241 |
if __name__ == "__main__":
|
|
|
1 |
+
# /// script
|
2 |
+
# requires-python = ">=3.11"
|
3 |
+
# dependencies = [
|
4 |
+
# "marimo",
|
5 |
+
# "duckdb==1.2.2",
|
6 |
+
# "polars==1.27.0",
|
7 |
+
# "numpy==2.2.4",
|
8 |
+
# "pyarrow==19.0.1",
|
9 |
+
# "pandas==2.2.3",
|
10 |
+
# "sqlglot==26.12.1",
|
11 |
+
# "plotly==5.23.1",
|
12 |
+
# ]
|
13 |
+
# ///
|
14 |
+
|
15 |
import marimo
|
16 |
|
17 |
+
__generated_with = "0.13.4"
|
18 |
+
app = marimo.App(width="medium")
|
19 |
+
|
20 |
+
|
21 |
+
@app.cell(hide_code=True)
|
22 |
+
def _(mo):
|
23 |
+
mo.md(
|
24 |
+
rf"""
|
25 |
+
<p align="center">
|
26 |
+
<img src="https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSxHAqB0W_61zuIGVMiU6sEeQyTaw-9xwiprw&s" alt="DuckDB Image"/>
|
27 |
+
</p>
|
28 |
+
"""
|
29 |
+
)
|
30 |
+
return
|
31 |
+
|
32 |
+
|
33 |
+
@app.cell(hide_code=True)
|
34 |
+
def _(mo):
|
35 |
+
mo.md(
|
36 |
+
rf"""
|
37 |
+
# 🦆 **DuckDB**: An Embeddable Analytical Database System
|
38 |
+
|
39 |
+
## What is DuckDB?
|
40 |
+
|
41 |
+
[DuckDB](https://duckdb.org/) is a _high-performance_, in-process, embeddable SQL OLAP (Online Analytical Processing) Database Management System (DBMS) designed for simplicity and speed. It's essentially a fully-featured database that runs directly within your application's process, without needing a separate server. This makes it excellent for complex analytical workloads, offering a robust SQL interface and efficient processing – perfect for learning about databases and data analysis concepts. It's a great alternative to heavier database systems like PostgreSQL or MySQL when you don't need a full-blown server.
|
42 |
+
|
43 |
+
---
|
44 |
+
|
45 |
+
## ⚡ Key Features
|
46 |
+
|
47 |
+
| Feature | Description |
|
48 |
+
|:---------|:-------------|
|
49 |
+
| **In-Process Architecture** | Runs directly within your application's memory space - no separate server needed, simplifying deployment |
|
50 |
+
| **Columnar Storage** | Data stored in columns instead of rows, dramatically improving performance for analytical queries |
|
51 |
+
| **Vectorized Execution** | Performs operations on entire columns at once, significantly speeding up data processing |
|
52 |
+
| **ACID Transactions** | Ensures data integrity and reliability across operations |
|
53 |
+
| **Multi-Language Support** | Provides APIs for `Python`, `R`, `Java`, `C++`, and more |
|
54 |
+
| **Zero External Dependencies** | Minimal dependencies, making setup and deployment straightforward |
|
55 |
+
| **High Portability** | Works across various operating systems (Windows, macOS, Linux) and hardware architectures |
|
56 |
+
|
57 |
+
---
|
58 |
+
|
59 |
+
## [Use Cases](https://github.com/davidgasquez/awesome-duckdb?tab=readme-ov-file):
|
60 |
+
|
61 |
+
- **Data Analysis and Exploration:** DuckDB is ideal for quickly querying and analyzing datasets, especially for initial exploratory analysis.
|
62 |
+
- **Embedded Analytics in Applications:** You can integrate DuckDB directly into your applications to provide analytical capabilities without the need for a separate database server.
|
63 |
+
- **ETL (Extract, Transform, Load) Processes:** DuckDB can be used to perform initial data transformation and cleaning steps as part of an ETL pipeline.
|
64 |
+
- **Data Science and Machine Learning Workflows:** It's a lightweight alternative to larger databases for prototyping data analysis and machine learning models.
|
65 |
+
- **Rapid Prototyping of Data Analysis Pipelines:** Quickly test and iterate on data analysis ideas without the complexity of setting up a full-blown database environment.
|
66 |
+
- **Small to Medium Datasets:** DuckDB shines when working with datasets that don't require the massive scalability of a traditional database server.
|
67 |
+
|
68 |
+
---
|
69 |
+
|
70 |
+
### [Installation](https://duckdb.org/docs/installation/?version=stable&environment=python):
|
71 |
+
|
72 |
+
- Python installation:
|
73 |
+
```
|
74 |
+
pip install duckdb
|
75 |
+
```
|
76 |
+
```
|
77 |
+
conda install python-duckdb -c conda-forge.
|
78 |
+
```
|
79 |
+
|
80 |
+
<!-- >**_Note_:** DuckDB requires Python 3.7 or newer. You also need to have Python and `pip` or `conda` installed on your system. -->
|
81 |
+
|
82 |
+
/// attention | Note
|
83 |
+
DuckDB requires Python 3.7 or newer. You also need to have Python and `pip` or `conda` installed on your system.
|
84 |
+
///
|
85 |
+
"""
|
86 |
+
)
|
87 |
+
return
|
88 |
+
|
89 |
+
|
90 |
+
@app.cell(hide_code=True)
|
91 |
+
def _(mo):
|
92 |
+
mo.md(
|
93 |
+
r"""
|
94 |
+
# [1. DuckDB Connections: In-Memory vs. File-based](https://duckdb.org/docs/stable/connect/overview.html)
|
95 |
+
|
96 |
+
DuckDB is a lightweight, _relational database management system (RDBMS)_ designed for analytical workloads. Unlike traditional client-server databases, it operates _in-process_ (embedded within your application) and supports both _in-memory_ (temporary) and _file-based_ (persistent) storage.
|
97 |
+
|
98 |
+
---
|
99 |
+
|
100 |
+
| Feature | In-Memory Connection | File-Based Connection |
|
101 |
+
|:---------|:---------------------|:----------------------|
|
102 |
+
| Persistence | Temporary (lost when session ends) | Stored on disk (persists between sessions) |
|
103 |
+
| Use Cases | Quick analysis, ephemeral data, testing | Long-term storage, data that needs to be accessed later |
|
104 |
+
| Performance | Faster for most operations | Slightly slower but provides persistence |
|
105 |
+
| Creation | duckdb.connect(':memory:') | duckdb.connect('filename.db') |
|
106 |
+
| Multiple Connection Access | Limited to single connection | Multiple connections can access the same database |
|
107 |
+
|
108 |
+
"""
|
109 |
+
)
|
110 |
+
return
|
111 |
+
|
112 |
+
|
113 |
+
@app.cell
|
114 |
+
def _(os):
|
115 |
+
# Remove previous database if it exists
|
116 |
+
if os.path.exists("example.db"):
|
117 |
+
os.remove("example.db")
|
118 |
+
|
119 |
+
if not os.path.exists("data"):
|
120 |
+
os.makedirs("data")
|
121 |
+
return
|
122 |
+
|
123 |
+
|
124 |
+
@app.cell
|
125 |
+
def _(mo):
|
126 |
+
_df = mo.sql(
|
127 |
+
f"""
|
128 |
+
-- Print the DuckDB version
|
129 |
+
SELECT version() AS version_info
|
130 |
+
"""
|
131 |
+
)
|
132 |
+
return
|
133 |
+
|
134 |
+
|
135 |
+
@app.cell(hide_code=True)
|
136 |
+
def _(mo):
|
137 |
+
mo.md(
|
138 |
+
"""
|
139 |
+
## Creating DuckDB Connections
|
140 |
+
|
141 |
+
Let's create both types of DuckDB connections and explore their characteristics.
|
142 |
+
|
143 |
+
1. **In-memory connection**: Data exists only during the current session
|
144 |
+
2. **File-based connection**: Data persists between sessions
|
145 |
+
|
146 |
+
We'll then demonstrate the key differences between these connection types.
|
147 |
+
"""
|
148 |
+
)
|
149 |
+
return
|
150 |
+
|
151 |
+
|
152 |
+
@app.cell
|
153 |
+
def _(duckdb):
|
154 |
+
# Create an in-memory DuckDB connection
|
155 |
+
memory_db = duckdb.connect(":memory:")
|
156 |
+
|
157 |
+
# Create a file-based DuckDB connection
|
158 |
+
file_db = duckdb.connect("example.db")
|
159 |
+
return file_db, memory_db
|
160 |
+
|
161 |
+
|
162 |
+
@app.cell
|
163 |
+
def _(file_db, memory_db):
|
164 |
+
# Test both connections
|
165 |
+
memory_db.execute(
|
166 |
+
"CREATE TABLE IF NOT EXISTS mem_test (id INTEGER, name VARCHAR)"
|
167 |
+
)
|
168 |
+
memory_db.execute("INSERT INTO mem_test VALUES (1, 'Memory Test')")
|
169 |
+
|
170 |
+
file_db.execute(
|
171 |
+
"CREATE TABLE IF NOT EXISTS file_test (id INTEGER, name VARCHAR)"
|
172 |
+
)
|
173 |
+
file_db.execute("INSERT INTO file_test VALUES (1, 'File Test')")
|
174 |
+
return
|
175 |
+
|
176 |
+
|
177 |
+
@app.cell(hide_code=True)
|
178 |
+
def _(mo):
|
179 |
+
mo.md(
|
180 |
+
r"""
|
181 |
+
## Testing Connection Persistence
|
182 |
+
|
183 |
+
Let's demonstrate how in-memory databases are ephemeral, while file-based databases persist.
|
184 |
+
|
185 |
+
1. First, we'll query our tables to confirm the data was properly inserted
|
186 |
+
2. Then, we'll simulate an application restart by creating new connections
|
187 |
+
3. Finally, we'll check which data persists after the "restart"
|
188 |
+
"""
|
189 |
+
)
|
190 |
+
return
|
191 |
+
|
192 |
+
|
193 |
+
@app.cell(hide_code=True)
|
194 |
+
def _(mo):
|
195 |
+
mo.md(r"""## Current Database Contents""")
|
196 |
+
return
|
197 |
+
|
198 |
+
|
199 |
+
@app.cell
|
200 |
+
def _(mem_test, memory_db, mo):
|
201 |
+
_df = mo.sql(
|
202 |
+
f"""
|
203 |
+
SELECT * FROM mem_test
|
204 |
+
""",
|
205 |
+
engine=memory_db
|
206 |
+
)
|
207 |
+
return
|
208 |
+
|
209 |
+
|
210 |
+
@app.cell
|
211 |
+
def _(file_db, file_test, mo):
|
212 |
+
_df = mo.sql(
|
213 |
+
f"""
|
214 |
+
SELECT * FROM file_test
|
215 |
+
""",
|
216 |
+
engine=file_db
|
217 |
+
)
|
218 |
+
return
|
219 |
+
|
220 |
+
|
221 |
+
@app.cell
|
222 |
+
def _():
|
223 |
+
# We don't actually close the connections here since we need them for later cells
|
224 |
+
# Just a placeholder for the concept
|
225 |
+
return
|
226 |
+
|
227 |
+
|
228 |
+
@app.cell(hide_code=True)
|
229 |
+
def _file_query(mo):
|
230 |
+
mo.md(rf"""## 🔄 Simulating Application Restart...""")
|
231 |
+
return
|
232 |
+
|
233 |
+
|
234 |
+
@app.cell
|
235 |
+
def _(duckdb):
|
236 |
+
# Create new connections (simulating restart)
|
237 |
+
new_memory_db = duckdb.connect(":memory:")
|
238 |
+
new_file_db = duckdb.connect("example.db")
|
239 |
+
return new_file_db, new_memory_db
|
240 |
+
|
241 |
+
|
242 |
+
@app.cell
|
243 |
+
def _(new_memory_db):
|
244 |
+
# Try to query tables in the new memory connection
|
245 |
+
try:
|
246 |
+
new_memory_db.execute("SELECT * FROM mem_test").df()
|
247 |
+
memory_persistence = "✅ Data persisted in memory (unexpected)"
|
248 |
+
memory_data_available = True
|
249 |
+
except Exception as e:
|
250 |
+
memory_persistence = "❌ Data lost from memory (expected behavior)"
|
251 |
+
memory_data_available = False
|
252 |
+
return memory_data_available, memory_persistence
|
253 |
+
|
254 |
+
|
255 |
+
@app.cell
|
256 |
+
def _(new_file_db):
|
257 |
+
# Try to query tables in the new file connection
|
258 |
+
try:
|
259 |
+
file_data = new_file_db.execute("SELECT * FROM file_test").df()
|
260 |
+
file_persistence = "✅ Data persisted in file (expected behavior)"
|
261 |
+
file_data_available = True
|
262 |
+
except Exception as e:
|
263 |
+
file_persistence = "❌ Data lost from file (unexpected)"
|
264 |
+
file_data_available = False
|
265 |
+
file_data = None
|
266 |
+
return file_data, file_data_available, file_persistence
|
267 |
+
|
268 |
+
|
269 |
+
@app.cell
|
270 |
+
def _(
|
271 |
+
file_data_available,
|
272 |
+
file_persistence,
|
273 |
+
memory_data_available,
|
274 |
+
memory_persistence,
|
275 |
+
mo,
|
276 |
+
):
|
277 |
+
# Create an interactive display to show persistence results
|
278 |
+
persistence_results = mo.ui.table(
|
279 |
+
{
|
280 |
+
"Connection Type": ["In-Memory Database", "File-Based Database"],
|
281 |
+
"Persistence Status": [memory_persistence, file_persistence],
|
282 |
+
"Data Available After Restart": [
|
283 |
+
memory_data_available,
|
284 |
+
file_data_available,
|
285 |
+
],
|
286 |
+
}
|
287 |
+
)
|
288 |
+
|
289 |
+
mo.md("### Persistence Test Results")
|
290 |
+
return (persistence_results,)
|
291 |
+
|
292 |
+
|
293 |
+
@app.cell
|
294 |
+
def _(persistence_results):
|
295 |
+
persistence_results
|
296 |
+
return
|
297 |
+
|
298 |
+
|
299 |
+
@app.cell
|
300 |
+
def _(file_data, file_data_available, mo):
|
301 |
+
if file_data_available:
|
302 |
+
mo.md("### Persisted File-Based Data:")
|
303 |
+
mo.ui.table(file_data)
|
304 |
+
return
|
305 |
+
|
306 |
+
|
307 |
+
@app.cell(hide_code=True)
|
308 |
+
def _(mo):
|
309 |
+
mo.md(
|
310 |
+
r"""
|
311 |
+
# [2. Creating Tables in DuckDB](https://duckdb.org/docs/stable/sql/statements/create_table.html)
|
312 |
+
|
313 |
+
DuckDB supports standard SQL syntax for creating tables. Let's create more complex tables to demonstrate different data types and constraints.
|
314 |
+
|
315 |
+
## Table Creation Options
|
316 |
+
|
317 |
+
DuckDB supports various table creation options, including:
|
318 |
+
|
319 |
+
- **Basic tables** with column definitions
|
320 |
+
- **Temporary tables** that exist only during the session
|
321 |
+
- **CREATE OR REPLACE** to recreate tables
|
322 |
+
- **Primary keys** and other constraints
|
323 |
+
- **Various data types** including INTEGER, VARCHAR, TIMESTAMP, DECIMAL, etc.
|
324 |
+
"""
|
325 |
+
)
|
326 |
+
return
|
327 |
+
|
328 |
+
|
329 |
+
@app.cell
|
330 |
+
def _create_users_tables(file_db, new_memory_db):
|
331 |
+
# For the memory database
|
332 |
+
try:
|
333 |
+
new_memory_db.execute("DROP TABLE IF EXISTS users_memory")
|
334 |
+
except:
|
335 |
+
pass
|
336 |
+
|
337 |
+
# For the file database
|
338 |
+
try:
|
339 |
+
file_db.execute("DROP TABLE IF EXISTS users_file")
|
340 |
+
except:
|
341 |
+
pass
|
342 |
+
return
|
343 |
+
|
344 |
+
|
345 |
+
@app.cell
|
346 |
+
def _(file_db, new_memory_db):
|
347 |
+
# Create advanced users table in memory database with primary key
|
348 |
+
new_memory_db.execute("""
|
349 |
+
CREATE TABLE users_memory (
|
350 |
+
id INTEGER PRIMARY KEY,
|
351 |
+
name VARCHAR NOT NULL,
|
352 |
+
age INTEGER CHECK (age > 0),
|
353 |
+
email VARCHAR UNIQUE,
|
354 |
+
registration_date DATE DEFAULT CURRENT_DATE,
|
355 |
+
last_login TIMESTAMP,
|
356 |
+
account_balance DECIMAL(10,2) DEFAULT 0.00
|
357 |
+
)
|
358 |
+
""")
|
359 |
+
|
360 |
+
# Create users table in file database
|
361 |
+
file_db.execute("""
|
362 |
+
CREATE TABLE users_file (
|
363 |
+
id INTEGER PRIMARY KEY,
|
364 |
+
name VARCHAR NOT NULL,
|
365 |
+
age INTEGER CHECK (age > 0),
|
366 |
+
email VARCHAR UNIQUE,
|
367 |
+
registration_date DATE DEFAULT CURRENT_DATE,
|
368 |
+
last_login TIMESTAMP,
|
369 |
+
account_balance DECIMAL(10,2) DEFAULT 0.00
|
370 |
+
)
|
371 |
+
""")
|
372 |
+
return
|
373 |
+
|
374 |
+
|
375 |
+
@app.cell
|
376 |
+
def _(mo, new_memory_db):
|
377 |
+
# Get table schema information using DuckDB's internal system tables
|
378 |
+
memory_schema = new_memory_db.execute("""
|
379 |
+
SELECT column_name, data_type, is_nullable
|
380 |
+
FROM information_schema.columns
|
381 |
+
WHERE table_name = 'users_memory'
|
382 |
+
ORDER BY ordinal_position
|
383 |
+
""").df()
|
384 |
+
|
385 |
+
# Display the schema using marimo's UI components
|
386 |
+
mo.md("### 🔍 Table Schema Information")
|
387 |
+
return (memory_schema,)
|
388 |
+
|
389 |
+
|
390 |
+
@app.cell(hide_code=True)
|
391 |
+
def _(memory_schema, mo):
|
392 |
+
mo.ui.table(memory_schema)
|
393 |
+
return
|
394 |
+
|
395 |
+
|
396 |
+
@app.cell(hide_code=True)
|
397 |
+
def _(mo):
|
398 |
+
mo.md(
|
399 |
+
r"""
|
400 |
+
# [3. Inserting Data Into Tables](https://duckdb.org/docs/stable/sql/statements/insert)
|
401 |
+
|
402 |
+
DuckDB supports multiple ways to insert data:
|
403 |
+
|
404 |
+
1. **INSERT INTO VALUES**: Insert specific values
|
405 |
+
2. **INSERT INTO SELECT**: Insert data from query results
|
406 |
+
3. **Parameterized inserts**: Using prepared statements
|
407 |
+
4. **Bulk inserts**: For efficient loading of multiple rows
|
408 |
+
|
409 |
+
Let's demonstrate these different insertion methods:
|
410 |
+
"""
|
411 |
+
)
|
412 |
+
return
|
413 |
+
|
414 |
+
|
415 |
+
@app.cell
|
416 |
+
def _insert_user_data(date):
|
417 |
+
today = date.today()
|
418 |
+
|
419 |
+
|
420 |
+
# First check if records already exist to avoid duplicate key errors
|
421 |
+
def safe_insert(connection, table_name, data):
|
422 |
+
"""
|
423 |
+
Safely insert data into a table by checking for existing IDs first
|
424 |
+
"""
|
425 |
+
# Check which IDs already exist in the table
|
426 |
+
existing_ids = (
|
427 |
+
connection.execute(f"SELECT id FROM {table_name}")
|
428 |
+
.fetchdf()["id"]
|
429 |
+
.tolist()
|
430 |
+
)
|
431 |
+
|
432 |
+
# Filter out data with IDs that already exist
|
433 |
+
new_data = [record for record in data if record[0] not in existing_ids]
|
434 |
+
|
435 |
+
if not new_data:
|
436 |
+
print(
|
437 |
+
f"No new records to insert into {table_name}. All IDs already exist."
|
438 |
+
)
|
439 |
+
return 0
|
440 |
+
|
441 |
+
# Prepare the placeholders for the SQL statement
|
442 |
+
placeholders = ", ".join(
|
443 |
+
["(" + ", ".join(["?"] * len(new_data[0])) + ")"] * len(new_data)
|
444 |
+
)
|
445 |
+
|
446 |
+
# Flatten the list of tuples for parameter binding
|
447 |
+
flat_data = [item for sublist in new_data for item in sublist]
|
448 |
+
|
449 |
+
# Perform the insertion
|
450 |
+
if flat_data:
|
451 |
+
columns = "(id, name, age, email, registration_date, last_login, account_balance)"
|
452 |
+
connection.execute(
|
453 |
+
f"INSERT INTO {table_name} {columns} VALUES {placeholders}",
|
454 |
+
flat_data,
|
455 |
+
)
|
456 |
+
return len(new_data)
|
457 |
+
return 0
|
458 |
+
return (safe_insert,)
|
459 |
+
|
460 |
+
|
461 |
+
@app.cell
|
462 |
+
def _():
|
463 |
+
# Prepare the data
|
464 |
+
user_data = [
|
465 |
+
(
|
466 |
+
1,
|
467 |
+
"Alice",
|
468 |
+
25,
|
469 |
+
"alice@example.com",
|
470 |
+
"2021-01-01",
|
471 |
+
"2023-01-15 14:30:00",
|
472 |
+
1250.75,
|
473 |
+
),
|
474 |
+
(
|
475 |
+
2,
|
476 |
+
"Bob",
|
477 |
+
30,
|
478 |
+
"bob@example.com",
|
479 |
+
"2021-02-01",
|
480 |
+
"2023-02-10 09:15:22",
|
481 |
+
750.50,
|
482 |
+
),
|
483 |
+
(
|
484 |
+
3,
|
485 |
+
"Charlie",
|
486 |
+
35,
|
487 |
+
"charlie@example.com",
|
488 |
+
"2021-03-01",
|
489 |
+
"2023-03-05 17:45:10",
|
490 |
+
3200.25,
|
491 |
+
),
|
492 |
+
(
|
493 |
+
4,
|
494 |
+
"David",
|
495 |
+
40,
|
496 |
+
"david@example.com",
|
497 |
+
"2021-04-01",
|
498 |
+
"2023-04-20 10:30:45",
|
499 |
+
1800.00,
|
500 |
+
),
|
501 |
+
(
|
502 |
+
5,
|
503 |
+
"Emma",
|
504 |
+
45,
|
505 |
+
"emma@example.com",
|
506 |
+
"2021-05-01",
|
507 |
+
"2023-05-12 11:20:30",
|
508 |
+
2500.00,
|
509 |
+
),
|
510 |
+
(
|
511 |
+
6,
|
512 |
+
"Frank",
|
513 |
+
50,
|
514 |
+
"frank@example.com",
|
515 |
+
"2021-06-01",
|
516 |
+
"2023-06-18 16:10:15",
|
517 |
+
900.25,
|
518 |
+
),
|
519 |
+
]
|
520 |
+
return (user_data,)
|
521 |
+
|
522 |
+
|
523 |
+
@app.cell
|
524 |
+
def _(mo, new_memory_db, safe_insert, user_data):
|
525 |
+
# Safely insert data into memory database
|
526 |
+
records_inserted = safe_insert(new_memory_db, "users_memory", user_data)
|
527 |
+
mo.md(
|
528 |
+
f"""
|
529 |
+
Inserted {records_inserted} new records into users_memory.
|
530 |
+
"""
|
531 |
+
)
|
532 |
+
return
|
533 |
+
|
534 |
+
|
535 |
+
@app.cell
|
536 |
+
def _(file_db, safe_insert, user_data):
|
537 |
+
def _():
|
538 |
+
# Safely insert data into file database
|
539 |
+
records_inserted = safe_insert(file_db, "users_file", user_data)
|
540 |
+
return print(f"Inserted {records_inserted} new records into users_file")
|
541 |
+
|
542 |
+
|
543 |
+
_()
|
544 |
+
return
|
545 |
+
|
546 |
+
|
547 |
+
@app.cell
|
548 |
+
def _():
|
549 |
+
# If you need to add just one record, you can use a similar approach:
|
550 |
+
new_user = (
|
551 |
+
7,
|
552 |
+
"Grace",
|
553 |
+
28,
|
554 |
+
"grace@example.com",
|
555 |
+
"2021-07-01",
|
556 |
+
"2023-07-22 13:45:10",
|
557 |
+
1675.50,
|
558 |
+
)
|
559 |
+
return (new_user,)
|
560 |
+
|
561 |
+
|
562 |
+
@app.cell
|
563 |
+
def _(new_memory_db, new_user):
|
564 |
+
# Check if the ID exists before inserting
|
565 |
+
if not new_memory_db.execute(
|
566 |
+
"SELECT id FROM users_memory WHERE id = ?", [new_user[0]]
|
567 |
+
).fetchone():
|
568 |
+
new_memory_db.execute(
|
569 |
+
"""
|
570 |
+
INSERT INTO users_memory (id, name, age, email, registration_date, last_login, account_balance)
|
571 |
+
VALUES (?, ?, ?, ?, ?, ?, ?)
|
572 |
+
""",
|
573 |
+
new_user,
|
574 |
+
)
|
575 |
+
print(f"Added user {new_user[1]} to users_memory")
|
576 |
+
else:
|
577 |
+
print(f"User with ID {new_user[0]} already exists in users_memory")
|
578 |
+
return
|
579 |
+
|
580 |
+
|
581 |
+
@app.cell
|
582 |
+
def _(file_db, new_user):
|
583 |
+
# Do the same for the file database
|
584 |
+
if not file_db.execute(
|
585 |
+
"SELECT id FROM users_file WHERE id = ?", [new_user[0]]
|
586 |
+
).fetchone():
|
587 |
+
file_db.execute(
|
588 |
+
"""
|
589 |
+
INSERT INTO users_file (id, name, age, email, registration_date, last_login, account_balance)
|
590 |
+
VALUES (?, ?, ?, ?, ?, ?, ?)
|
591 |
+
""",
|
592 |
+
new_user,
|
593 |
+
)
|
594 |
+
print(f"Added user {new_user[1]} to users_file")
|
595 |
+
else:
|
596 |
+
print(f"User with ID {new_user[0]} already exists in users_file")
|
597 |
+
return
|
598 |
+
|
599 |
+
|
600 |
+
@app.cell
|
601 |
+
def _(new_memory_db):
|
602 |
+
# First try to update
|
603 |
+
cursor = new_memory_db.execute(
|
604 |
+
"""
|
605 |
+
UPDATE users_memory
|
606 |
+
SET name = ?, age = ?, email = ?,
|
607 |
+
registration_date = ?, last_login = ?, account_balance = ?
|
608 |
+
WHERE id = ?
|
609 |
+
""",
|
610 |
+
(
|
611 |
+
"Henry",
|
612 |
+
33,
|
613 |
+
"henry@example.com",
|
614 |
+
"2021-08-01",
|
615 |
+
"2023-08-05 09:10:15",
|
616 |
+
3100.75,
|
617 |
+
8, # ID should be the last parameter
|
618 |
+
),
|
619 |
+
)
|
620 |
+
return (cursor,)
|
621 |
+
|
622 |
+
|
623 |
+
@app.cell
|
624 |
+
def _(cursor, mo, new_memory_db):
|
625 |
+
# If no rows were updated, perform an insert
|
626 |
+
if cursor.rowcount == 0:
|
627 |
+
new_memory_db.execute(
|
628 |
+
"""
|
629 |
+
INSERT INTO users_memory
|
630 |
+
(id, name, age, email, registration_date, last_login, account_balance)
|
631 |
+
VALUES (?, ?, ?, ?, ?, ?, ?)
|
632 |
+
""",
|
633 |
+
(
|
634 |
+
8,
|
635 |
+
"Henry",
|
636 |
+
33,
|
637 |
+
"henry@example.com",
|
638 |
+
"2021-08-01",
|
639 |
+
"2023-08-05 09:10:15",
|
640 |
+
3100.75,
|
641 |
+
),
|
642 |
+
)
|
643 |
+
|
644 |
+
mo.md(
|
645 |
+
f"""
|
646 |
+
Upserted Henry into users_memory.
|
647 |
+
"""
|
648 |
+
)
|
649 |
+
return
|
650 |
+
|
651 |
+
|
652 |
+
@app.cell
|
653 |
+
def _(file_db, mo):
|
654 |
+
# For DuckDB using ON CONFLICT, we need to specify the conflict target column
|
655 |
+
file_db.execute(
|
656 |
+
"""
|
657 |
+
INSERT INTO users_file (id, name, age, email, registration_date, last_login, account_balance)
|
658 |
+
VALUES (?, ?, ?, ?, ?, ?, ?)
|
659 |
+
ON CONFLICT (id) DO UPDATE SET
|
660 |
+
name = EXCLUDED.name,
|
661 |
+
age = EXCLUDED.age,
|
662 |
+
email = EXCLUDED.email,
|
663 |
+
registration_date = EXCLUDED.registration_date,
|
664 |
+
last_login = EXCLUDED.last_login,
|
665 |
+
account_balance = EXCLUDED.account_balance
|
666 |
+
""",
|
667 |
+
(
|
668 |
+
8,
|
669 |
+
"Henry",
|
670 |
+
33,
|
671 |
+
"henry@example.com",
|
672 |
+
"2021-08-01",
|
673 |
+
"2023-08-05 09:10:15",
|
674 |
+
3100.75,
|
675 |
+
),
|
676 |
+
)
|
677 |
+
|
678 |
+
mo.md(
|
679 |
+
f"""
|
680 |
+
Upserted Henry into users_file.
|
681 |
+
"""
|
682 |
+
)
|
683 |
+
return
|
684 |
+
|
685 |
+
|
686 |
+
@app.cell
|
687 |
+
def _view_tables_after_insert(new_memory_db):
|
688 |
+
# Display memory data using DuckDB's query capabilities
|
689 |
+
memory_results = new_memory_db.execute("""
|
690 |
+
SELECT
|
691 |
+
id,
|
692 |
+
name,
|
693 |
+
age,
|
694 |
+
email,
|
695 |
+
registration_date,
|
696 |
+
last_login,
|
697 |
+
account_balance
|
698 |
+
FROM users_memory
|
699 |
+
ORDER BY id
|
700 |
+
""").df()
|
701 |
+
return (memory_results,)
|
702 |
+
|
703 |
+
|
704 |
+
@app.cell
|
705 |
+
def _(file_db):
|
706 |
+
# Display file data with formatting
|
707 |
+
file_results = file_db.execute("""
|
708 |
+
SELECT
|
709 |
+
id,
|
710 |
+
name,
|
711 |
+
age,
|
712 |
+
email,
|
713 |
+
registration_date,
|
714 |
+
last_login,
|
715 |
+
CAST(account_balance AS DECIMAL(10,2)) AS account_balance
|
716 |
+
FROM users_file
|
717 |
+
ORDER BY id
|
718 |
+
""").df()
|
719 |
+
return (file_results,)
|
720 |
+
|
721 |
+
|
722 |
+
@app.cell
|
723 |
+
def _(mo):
|
724 |
+
mo.md(
|
725 |
+
r"""
|
726 |
+
<!-- Create an interactive display with tabs using marimo components -->
|
727 |
+
## 📊 Database Contents After Insertion
|
728 |
+
"""
|
729 |
+
)
|
730 |
+
return
|
731 |
+
|
732 |
+
|
733 |
+
@app.cell(hide_code=True)
|
734 |
+
def _(file_results, memory_results, mo):
|
735 |
+
tabs = mo.ui.tabs(
|
736 |
+
{
|
737 |
+
"In-Memory Database": mo.ui.table(memory_results),
|
738 |
+
"File-Based Database": mo.ui.table(file_results),
|
739 |
+
}
|
740 |
+
)
|
741 |
+
tabs
|
742 |
+
return
|
743 |
+
|
744 |
+
|
745 |
+
@app.cell(hide_code=True)
|
746 |
+
def _(mo):
|
747 |
+
mo.md(
|
748 |
+
r"""
|
749 |
+
# [4. Using SQL Directly in Marimo](https://duckdb.org/docs/stable/sql/query_syntax/select)
|
750 |
+
|
751 |
+
There are multiple ways to leverage DuckDB's SQL capabilities in marimo:
|
752 |
+
|
753 |
+
1. **Direct execution**: Using DuckDB connections to execute SQL
|
754 |
+
2. **Marimo SQL**: Using Marimo's built-in SQL engine
|
755 |
+
3. **Interactive queries**: Combining UI elements with SQL execution
|
756 |
+
|
757 |
+
Let's explore these approaches:
|
758 |
+
"""
|
759 |
+
)
|
760 |
+
return
|
761 |
+
|
762 |
+
|
763 |
+
@app.cell(hide_code=True)
|
764 |
+
def _sql_with_marimo(mo):
|
765 |
+
mo.md(
|
766 |
+
rf"""
|
767 |
+
<!-- Using Marimo's SQL engine with direct SQL on memory_results DataFrame -->
|
768 |
+
## 🔍 Query with Marimo SQL
|
769 |
+
"""
|
770 |
+
)
|
771 |
+
return
|
772 |
|
773 |
|
774 |
@app.cell(hide_code=True)
|
775 |
+
def _(mo):
|
776 |
mo.md(
|
777 |
+
rf"""
|
778 |
+
## Marimo has its own built-in SQL engine that can work with DataFrames.
|
779 |
+
Let's use it to filter our users:
|
780 |
+
"""
|
781 |
+
)
|
782 |
+
return
|
783 |
+
|
784 |
+
|
785 |
+
@app.cell
|
786 |
+
def _(mo):
|
787 |
+
# Create a SQL selector for users with age threshold
|
788 |
+
age_threshold = mo.ui.slider(25, 50, value=30, label="Minimum Age")
|
789 |
+
return (age_threshold,)
|
790 |
+
|
791 |
|
792 |
+
@app.cell
|
793 |
+
def _(age_threshold, memory_results, mo):
|
794 |
+
# Create a function to filter users based on the slider value
|
795 |
+
def filtered_users():
|
796 |
+
# Use DuckDB directly instead of mo.sql with users param
|
797 |
+
filtered_df = memory_results[memory_results["age"] >= age_threshold.value]
|
798 |
+
filtered_df = filtered_df.sort_values("age")
|
799 |
+
return mo.ui.table(filtered_df)
|
800 |
+
return (filtered_users,)
|
801 |
|
|
|
802 |
|
803 |
+
@app.cell
|
804 |
+
def _(age_threshold, filtered_users, mo):
|
805 |
+
layout = mo.vstack(
|
806 |
+
[
|
807 |
+
mo.md("### Select minimum age:"),
|
808 |
+
age_threshold,
|
809 |
+
mo.md("### Users meeting age criteria:"),
|
810 |
+
filtered_users(),
|
811 |
+
],
|
812 |
+
gap=1.5,
|
813 |
+
)
|
814 |
+
layout
|
815 |
+
return
|
816 |
|
|
|
|
|
|
|
|
|
|
|
|
|
817 |
|
818 |
+
@app.cell(hide_code=True)
|
819 |
+
def _(mo):
|
820 |
+
mo.md(r"""# [5. Working with Polars and DuckDB](https://duckdb.org/docs/stable/guides/python/polars.html)""")
|
821 |
+
return
|
822 |
|
|
|
|
|
|
|
|
|
|
|
823 |
|
824 |
+
@app.cell
|
825 |
+
def _polars_integration(pl):
|
826 |
+
# Create a Polars DataFrame
|
827 |
+
polars_df = pl.DataFrame(
|
828 |
+
{
|
829 |
+
"id": [101, 102, 103],
|
830 |
+
"name": ["Product A", "Product B", "Product C"],
|
831 |
+
"price": [29.99, 49.99, 19.99],
|
832 |
+
"category": ["Electronics", "Furniture", "Books"],
|
833 |
+
}
|
834 |
+
)
|
835 |
+
return (polars_df,)
|
836 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
837 |
|
838 |
+
@app.cell
|
839 |
+
def _(mo):
|
840 |
+
mo.md(
|
841 |
+
rf"""
|
842 |
+
<!-- Display the Polars DataFrame -->
|
843 |
+
## Original Polars DataFrame:
|
844 |
+
"""
|
845 |
)
|
846 |
return
|
847 |
|
848 |
|
849 |
+
@app.cell
|
850 |
+
def _(mo, polars_df):
|
851 |
+
mo.ui.table(polars_df)
|
852 |
+
return
|
853 |
+
|
854 |
+
|
855 |
+
@app.cell
|
856 |
+
def _(new_memory_db, polars_df):
|
857 |
+
# Register the Polars DataFrame as a DuckDB table in memory connection
|
858 |
+
new_memory_db.register("products_polars", polars_df)
|
859 |
+
|
860 |
+
# Query the registered table
|
861 |
+
polars_query_result = new_memory_db.execute(
|
862 |
+
"SELECT * FROM products_polars WHERE price > 25"
|
863 |
+
).df()
|
864 |
+
return (polars_query_result,)
|
865 |
+
|
866 |
+
|
867 |
@app.cell(hide_code=True)
|
868 |
def _(mo):
|
869 |
mo.md(
|
870 |
r"""
|
871 |
+
<!-- Display the query result -->
|
872 |
+
## DuckDB Query Result (From Polars Data):
|
873 |
+
"""
|
|
|
874 |
)
|
875 |
return
|
876 |
|
877 |
|
878 |
@app.cell
|
879 |
+
def _(mo, polars_query_result):
|
880 |
+
mo.ui.table(polars_query_result)
|
881 |
+
return
|
882 |
+
|
883 |
+
|
884 |
+
@app.cell
|
885 |
+
def _(mo, new_memory_db):
|
886 |
+
# Demonstrate a more complex query
|
887 |
+
complex_query_result = new_memory_db.execute("""
|
888 |
+
SELECT
|
889 |
+
category,
|
890 |
+
COUNT(*) as product_count,
|
891 |
+
AVG(price) as avg_price,
|
892 |
+
MIN(price) as min_price,
|
893 |
+
MAX(price) as max_price
|
894 |
+
FROM products_polars
|
895 |
+
GROUP BY category
|
896 |
+
ORDER BY avg_price DESC
|
897 |
+
""").df()
|
898 |
+
|
899 |
+
mo.md("## Aggregated Product Data by Category:")
|
900 |
+
return (complex_query_result,)
|
901 |
+
|
902 |
+
|
903 |
+
@app.cell
|
904 |
+
def _(complex_query_result, mo):
|
905 |
+
mo.ui.table(complex_query_result)
|
906 |
+
return
|
907 |
|
908 |
|
909 |
@app.cell(hide_code=True)
|
910 |
def _(mo):
|
911 |
+
mo.md(r"""# [6. Advanced Queries: Joins Between Tables](https://duckdb.org/docs/stable/guides/performance/join_operations.html)""")
|
|
|
|
|
912 |
return
|
913 |
|
914 |
|
915 |
@app.cell
|
916 |
+
def _join_operations(new_memory_db):
|
917 |
+
# Create another table to join with
|
918 |
+
new_memory_db.execute("""
|
919 |
+
CREATE TABLE IF NOT EXISTS departments (
|
920 |
id INTEGER,
|
921 |
+
department_name VARCHAR,
|
922 |
+
manager_id INTEGER
|
|
|
923 |
)
|
924 |
+
""")
|
925 |
+
return
|
926 |
+
|
927 |
+
|
928 |
+
@app.cell
|
929 |
+
def _(new_memory_db):
|
930 |
+
new_memory_db.execute("""
|
931 |
+
INSERT INTO departments VALUES
|
932 |
+
(101, 'Engineering', 1),
|
933 |
+
(102, 'Marketing', 2),
|
934 |
+
(103, 'Finance', NULL)
|
935 |
+
""")
|
936 |
+
return
|
937 |
+
|
938 |
+
|
939 |
+
@app.cell
|
940 |
+
def _(new_memory_db):
|
941 |
+
# Execute a join query
|
942 |
+
join_result = new_memory_db.execute("""
|
943 |
+
SELECT
|
944 |
+
u.id,
|
945 |
+
u.name,
|
946 |
+
u.age,
|
947 |
+
d.department_name
|
948 |
+
FROM users_memory u
|
949 |
+
LEFT JOIN departments d ON u.id = d.manager_id
|
950 |
+
ORDER BY u.id
|
951 |
+
""").df()
|
952 |
+
return (join_result,)
|
953 |
+
|
954 |
+
|
955 |
+
@app.cell(hide_code=True)
|
956 |
+
def _(mo):
|
957 |
+
mo.md(
|
958 |
+
rf"""
|
959 |
+
<!-- Display the join result -->
|
960 |
+
## Join Result (Users and Departments):
|
961 |
"""
|
962 |
)
|
963 |
return
|
964 |
|
965 |
|
966 |
+
@app.cell
|
967 |
+
def _(join_result, mo):
|
968 |
+
mo.ui.table(join_result)
|
969 |
+
return
|
970 |
+
|
971 |
+
|
972 |
@app.cell(hide_code=True)
|
973 |
def _(mo):
|
974 |
mo.md(
|
975 |
+
rf"""
|
976 |
+
<!-- Demonstrate different types of joins -->
|
977 |
+
## Different Types of Joins
|
978 |
+
"""
|
979 |
)
|
980 |
return
|
981 |
|
982 |
|
983 |
@app.cell
|
984 |
+
def _(new_memory_db):
|
985 |
+
# Inner join
|
986 |
+
inner_join = new_memory_db.execute("""
|
987 |
+
SELECT u.id, u.name, d.department_name
|
988 |
+
FROM users_memory u
|
989 |
+
INNER JOIN departments d ON u.id = d.manager_id
|
990 |
+
""").df()
|
991 |
+
|
992 |
+
# Right join
|
993 |
+
right_join = new_memory_db.execute("""
|
994 |
+
SELECT u.id, u.name, d.department_name
|
995 |
+
FROM users_memory u
|
996 |
+
RIGHT JOIN departments d ON u.id = d.manager_id
|
997 |
+
""").df()
|
998 |
+
|
999 |
+
# Full outer join
|
1000 |
+
full_join = new_memory_db.execute("""
|
1001 |
+
SELECT u.id, u.name, d.department_name
|
1002 |
+
FROM users_memory u
|
1003 |
+
FULL OUTER JOIN departments d ON u.id = d.manager_id
|
1004 |
+
""").df()
|
1005 |
+
return full_join, inner_join, right_join
|
1006 |
+
|
1007 |
+
|
1008 |
+
@app.cell
|
1009 |
+
def _(full_join, inner_join, join_result, mo, right_join):
|
1010 |
+
join_tabs = mo.ui.tabs(
|
1011 |
+
{
|
1012 |
+
"Left Join": mo.ui.table(join_result),
|
1013 |
+
"Inner Join": mo.ui.table(inner_join),
|
1014 |
+
"Right Join": mo.ui.table(right_join),
|
1015 |
+
"Full Outer Join": mo.ui.table(full_join),
|
1016 |
+
}
|
1017 |
)
|
1018 |
+
|
1019 |
+
join_tabs
|
1020 |
+
return
|
1021 |
+
|
1022 |
+
|
1023 |
+
@app.cell(hide_code=True)
|
1024 |
+
def _(mo):
|
1025 |
+
mo.md(r"""# [7. Aggregate Functions in DuckDB](https://duckdb.org/docs/stable/sql/functions/aggregates.html)""")
|
1026 |
return
|
1027 |
|
1028 |
|
1029 |
+
@app.cell
|
1030 |
+
def _aggregate_operations(new_memory_db):
|
1031 |
+
# Execute an aggregate query
|
1032 |
+
agg_result = new_memory_db.execute("""
|
1033 |
+
SELECT
|
1034 |
+
AVG(age) as avg_age,
|
1035 |
+
MAX(age) as max_age,
|
1036 |
+
MIN(age) as min_age,
|
1037 |
+
COUNT(*) as total_users,
|
1038 |
+
SUM(account_balance) as total_balance
|
1039 |
+
FROM users_memory
|
1040 |
+
""").df()
|
1041 |
+
return (agg_result,)
|
1042 |
+
|
1043 |
+
|
1044 |
@app.cell(hide_code=True)
|
1045 |
def _(mo):
|
1046 |
mo.md(
|
1047 |
+
rf"""
|
1048 |
+
<!-- Display the aggregate result -->
|
1049 |
+
## Aggregate Results (All Users):
|
1050 |
+
"""
|
1051 |
)
|
1052 |
return
|
1053 |
|
1054 |
|
1055 |
@app.cell
|
1056 |
+
def _(agg_result, mo):
|
1057 |
+
mo.ui.table(agg_result)
|
1058 |
+
return
|
|
|
|
|
|
|
1059 |
|
1060 |
|
1061 |
@app.cell(hide_code=True)
|
1062 |
def _(mo):
|
1063 |
mo.md(
|
1064 |
+
rf"""
|
1065 |
+
<!-- More complex aggregate query with grouping -->
|
1066 |
+
## Aggregate Results (Grouped by Age Range):
|
1067 |
+
"""
|
1068 |
)
|
1069 |
return
|
1070 |
|
1071 |
|
1072 |
@app.cell
|
1073 |
+
def _(new_memory_db):
|
1074 |
+
age_groups = new_memory_db.execute("""
|
1075 |
+
SELECT
|
1076 |
+
CASE
|
1077 |
+
WHEN age < 30 THEN 'Under 30'
|
1078 |
+
WHEN age BETWEEN 30 AND 40 THEN '30 to 40'
|
1079 |
+
ELSE 'Over 40'
|
1080 |
+
END as age_group,
|
1081 |
+
COUNT(*) as count,
|
1082 |
+
AVG(age) as avg_age,
|
1083 |
+
AVG(account_balance) as avg_balance
|
1084 |
+
FROM users_memory
|
1085 |
+
GROUP BY 1
|
1086 |
+
ORDER BY 1
|
1087 |
+
""").df()
|
1088 |
+
return (age_groups,)
|
1089 |
+
|
1090 |
+
|
1091 |
+
@app.cell
|
1092 |
+
def _(age_groups, mo):
|
1093 |
+
mo.ui.table(age_groups)
|
1094 |
+
return
|
1095 |
+
|
1096 |
+
|
1097 |
+
@app.cell
|
1098 |
+
def _(mo):
|
1099 |
+
mo.md(
|
1100 |
+
r"""
|
1101 |
+
<!-- Window functions demo -->
|
1102 |
+
### Window Functions Example:
|
1103 |
+
"""
|
1104 |
)
|
1105 |
+
return
|
1106 |
+
|
1107 |
|
1108 |
+
@app.cell
|
1109 |
+
def _(mo, new_memory_db):
|
1110 |
+
window_result = new_memory_db.execute("""
|
1111 |
+
SELECT
|
1112 |
+
id,
|
1113 |
+
name,
|
1114 |
+
age,
|
1115 |
+
account_balance,
|
1116 |
+
RANK() OVER (ORDER BY account_balance DESC) as balance_rank,
|
1117 |
+
account_balance - AVG(account_balance) OVER () as diff_from_avg,
|
1118 |
+
account_balance / SUM(account_balance) OVER () * 100 as pct_of_total
|
1119 |
+
FROM users_memory
|
1120 |
+
ORDER BY balance_rank
|
1121 |
+
""").df()
|
1122 |
+
|
1123 |
+
mo.ui.table(window_result)
|
1124 |
+
return
|
1125 |
+
|
1126 |
+
|
1127 |
+
@app.cell(hide_code=True)
|
1128 |
+
def _(mo):
|
1129 |
+
mo.md(r"""# [8. Converting DuckDB Results to Polars/Pandas](https://duckdb.org/docs/stable/guides/python/polars.html)""")
|
1130 |
+
return
|
1131 |
|
1132 |
+
|
1133 |
+
@app.cell
|
1134 |
+
def _convert_results(new_memory_db):
|
1135 |
+
polars_result = new_memory_db.execute(
|
1136 |
+
"""SELECT * FROM users_memory WHERE age > 25 ORDER BY age"""
|
1137 |
+
).pl()
|
1138 |
+
return (polars_result,)
|
|
|
1139 |
|
1140 |
|
1141 |
@app.cell(hide_code=True)
|
1142 |
def _(mo):
|
1143 |
mo.md(
|
1144 |
+
r"""
|
1145 |
+
<!-- Display the converted results -->
|
1146 |
+
## Query Result as Polars DataFrame:
|
1147 |
+
"""
|
1148 |
)
|
1149 |
return
|
1150 |
|
1151 |
|
1152 |
@app.cell
|
1153 |
+
def _(mo, polars_result):
|
1154 |
+
mo.ui.table(polars_result)
|
1155 |
+
return
|
1156 |
+
|
1157 |
+
|
1158 |
+
@app.cell
|
1159 |
+
def _(new_memory_db):
|
1160 |
+
pandas_result = new_memory_db.execute(
|
1161 |
+
"""SELECT * FROM users_memory WHERE age > 25 ORDER BY age"""
|
1162 |
+
).fetch_df()
|
1163 |
+
return (pandas_result,)
|
1164 |
+
|
1165 |
+
|
1166 |
+
@app.cell(hide_code=True)
|
1167 |
+
def _(mo):
|
1168 |
+
mo.md(r"""## Same Query Result as Pandas DataFrame:""")
|
1169 |
+
return
|
1170 |
+
|
1171 |
+
|
1172 |
+
@app.cell
|
1173 |
+
def _(mo, pandas_result):
|
1174 |
+
mo.ui.table(pandas_result)
|
1175 |
+
return
|
1176 |
+
|
1177 |
+
|
1178 |
+
@app.cell(hide_code=True)
|
1179 |
+
def _(mo):
|
1180 |
+
mo.md(
|
1181 |
+
r"""
|
1182 |
+
<!-- Demonstrate the differences in handling -->
|
1183 |
+
## Differences in DataFrame Handling
|
1184 |
"""
|
1185 |
)
|
1186 |
+
return
|
|
|
|
|
|
|
1187 |
|
1188 |
|
1189 |
@app.cell(hide_code=True)
|
1190 |
def _(mo):
|
1191 |
mo.md(
|
1192 |
+
r"""
|
1193 |
+
<!-- Polars operation -->
|
1194 |
+
## Polars: Filter users over 35 and calculate average balance
|
1195 |
+
"""
|
1196 |
)
|
1197 |
return
|
1198 |
|
1199 |
|
1200 |
@app.cell
|
1201 |
+
def _(mo, pl, polars_result):
|
1202 |
+
def _():
|
1203 |
+
polars_filtered = polars_result.filter(pl.col("age") > 35)
|
1204 |
+
polars_avg = polars_filtered.select(
|
1205 |
+
pl.col("account_balance").mean().alias("avg_balance")
|
1206 |
+
)
|
1207 |
+
|
1208 |
+
layout = mo.vstack(
|
1209 |
+
[
|
1210 |
+
mo.md("### Filtered Polars DataFrame (Age > 35):"),
|
1211 |
+
mo.ui.table(polars_filtered),
|
1212 |
+
mo.md("### Average Account Balance:"),
|
1213 |
+
mo.ui.table(polars_avg),
|
1214 |
+
],
|
1215 |
+
gap=1.5,
|
1216 |
+
)
|
1217 |
+
return layout
|
1218 |
+
|
1219 |
+
|
1220 |
+
_()
|
1221 |
+
return
|
1222 |
+
|
1223 |
+
|
1224 |
+
@app.cell(hide_code=True)
|
1225 |
+
def _(mo):
|
1226 |
+
mo.md(
|
1227 |
+
r"""
|
1228 |
+
<!-- Pandas equivalent (using pandas style) -->
|
1229 |
+
## Pandas: Same operation in pandas style
|
1230 |
"""
|
|
|
|
|
|
|
|
|
|
|
1231 |
)
|
1232 |
+
return
|
1233 |
+
|
1234 |
+
|
1235 |
+
@app.cell
|
1236 |
+
def _(mo, pandas_result):
|
1237 |
+
pandas_avg = pandas_result[pandas_result["age"] > 35]["account_balance"].mean()
|
1238 |
+
mo.md(f"Average balance: {pandas_avg:.2f}")
|
1239 |
+
return
|
1240 |
+
|
1241 |
+
|
1242 |
+
@app.cell(hide_code=True)
|
1243 |
+
def _(mo):
|
1244 |
+
mo.md("""## 9. Data Visualization with DuckDB and Plotly""")
|
1245 |
+
return
|
1246 |
+
|
1247 |
+
|
1248 |
+
@app.cell
|
1249 |
+
def _(age_groups, mo, new_memory_db, plotly_express):
|
1250 |
+
# User distribution by age group
|
1251 |
+
fig1 = plotly_express.bar(
|
1252 |
+
age_groups,
|
1253 |
+
x="age_group",
|
1254 |
+
y="count",
|
1255 |
+
title="User Distribution by Age Group",
|
1256 |
+
labels={"count": "Number of Users", "age_group": "Age Group"},
|
1257 |
+
color="age_group",
|
1258 |
+
color_discrete_sequence=plotly_express.colors.qualitative.Plotly,
|
1259 |
+
)
|
1260 |
+
fig1.update_traces(
|
1261 |
+
text=age_groups["count"],
|
1262 |
+
textposition="outside",
|
1263 |
+
)
|
1264 |
+
fig1.update_layout(height=450, margin=dict(t=50, b=50))
|
1265 |
+
|
1266 |
+
|
1267 |
+
# Average balance by age group
|
1268 |
+
fig2 = plotly_express.bar(
|
1269 |
+
age_groups,
|
1270 |
+
x="age_group",
|
1271 |
+
y="avg_balance",
|
1272 |
+
title="Average Account Balance by Age Group",
|
1273 |
+
labels={"avg_balance": "Average Balance ($)", "age_group": "Age Group"},
|
1274 |
+
color="age_group",
|
1275 |
+
color_discrete_sequence=plotly_express.colors.qualitative.Plotly,
|
1276 |
+
)
|
1277 |
+
fig2.update_traces(
|
1278 |
+
text=[f"${val:.2f}" for val in age_groups["avg_balance"]],
|
1279 |
+
textposition="outside",
|
1280 |
+
)
|
1281 |
+
fig2.update_layout(height=450, margin=dict(t=50, b=50))
|
1282 |
+
|
1283 |
+
|
1284 |
+
# Age vs Account Balance scatter plot
|
1285 |
+
scatter_data = new_memory_db.execute(
|
1286 |
+
"""
|
1287 |
+
SELECT
|
1288 |
+
name,
|
1289 |
+
age,
|
1290 |
+
account_balance
|
1291 |
+
FROM users_memory
|
1292 |
+
ORDER BY age
|
1293 |
+
"""
|
1294 |
+
).df()
|
1295 |
+
|
1296 |
+
fig3 = plotly_express.scatter(
|
1297 |
+
scatter_data,
|
1298 |
+
x="age",
|
1299 |
+
y="account_balance",
|
1300 |
+
title="Age vs. Account Balance",
|
1301 |
+
labels={"account_balance": "Account Balance ($)", "age": "Age"},
|
1302 |
+
color_discrete_sequence=["#FF7F0E"],
|
1303 |
+
trendline="ols",
|
1304 |
+
hover_data=["age", "account_balance"],
|
1305 |
+
size_max=15,
|
1306 |
+
)
|
1307 |
+
fig3.update_traces(marker=dict(size=12))
|
1308 |
+
fig3.update_layout(height=450, margin=dict(t=50, b=50))
|
1309 |
+
|
1310 |
+
|
1311 |
+
# Distribution of account balances
|
1312 |
+
balance_data = new_memory_db.execute(
|
1313 |
+
"""
|
1314 |
+
SELECT
|
1315 |
+
name,
|
1316 |
+
account_balance
|
1317 |
+
FROM users_memory
|
1318 |
+
ORDER BY account_balance DESC
|
1319 |
+
"""
|
1320 |
+
).df()
|
1321 |
+
|
1322 |
+
fig4 = plotly_express.pie(
|
1323 |
+
balance_data,
|
1324 |
+
names="name",
|
1325 |
+
values="account_balance",
|
1326 |
+
title="Distribution of Account Balances",
|
1327 |
+
labels={"account_balance": "Account Balance ($)", "name": "User"},
|
1328 |
+
color_discrete_sequence=plotly_express.colors.qualitative.Pastel,
|
1329 |
+
)
|
1330 |
+
fig4.update_traces(textinfo="percent+label", textposition="inside")
|
1331 |
+
fig4.update_layout(height=450, margin=dict(t=50, b=50))
|
1332 |
+
|
1333 |
+
|
1334 |
+
category_tabs = mo.ui.tabs(
|
1335 |
+
{
|
1336 |
+
"Age Group Analysis": mo.vstack(
|
1337 |
+
[
|
1338 |
+
mo.ui.tabs(
|
1339 |
+
{
|
1340 |
+
"User Distribution": mo.ui.plotly(fig1),
|
1341 |
+
"Average Balance": mo.ui.plotly(fig2),
|
1342 |
+
}
|
1343 |
+
)
|
1344 |
+
]
|
1345 |
+
),
|
1346 |
+
"Financial Analysis": mo.vstack(
|
1347 |
+
[
|
1348 |
+
mo.ui.tabs(
|
1349 |
+
{
|
1350 |
+
"Age vs Balance": mo.ui.plotly(fig3),
|
1351 |
+
"Balance Distribution": mo.ui.plotly(fig4),
|
1352 |
+
}
|
1353 |
+
)
|
1354 |
+
]
|
1355 |
+
),
|
1356 |
+
},
|
1357 |
+
lazy=True,
|
1358 |
+
)
|
1359 |
+
|
1360 |
+
mo.vstack(
|
1361 |
+
[
|
1362 |
+
mo.md("### Select a visualization category:"),
|
1363 |
+
category_tabs,
|
1364 |
+
],
|
1365 |
+
gap=1.5,
|
1366 |
+
)
|
1367 |
+
return
|
1368 |
|
1369 |
|
1370 |
@app.cell(hide_code=True)
|
1371 |
def _(mo):
|
1372 |
mo.md(
|
1373 |
+
r"""
|
1374 |
+
# [9. Database Management Best Practices]
|
1375 |
+
|
1376 |
+
### Closing Connections
|
1377 |
+
|
1378 |
+
It's important to close database connections when you're done with them, especially for file-based connections:
|
1379 |
+
|
1380 |
+
```python
|
1381 |
+
memory_db.close()
|
1382 |
+
file_db.close()
|
1383 |
+
```
|
1384 |
+
|
1385 |
+
### Transaction Management
|
1386 |
+
|
1387 |
+
DuckDB supports transactions, which can be useful for more complex operations:
|
1388 |
+
|
1389 |
+
```python
|
1390 |
+
conn = duckdb.connect('mydb.db')
|
1391 |
+
conn.begin() # Start transaction
|
1392 |
+
|
1393 |
+
try:
|
1394 |
+
conn.execute("INSERT INTO users VALUES (1, 'Test User')")
|
1395 |
+
conn.execute("UPDATE balances SET amount = amount - 100 WHERE user_id = 1")
|
1396 |
+
conn.commit() # Commit changes
|
1397 |
+
except:
|
1398 |
+
conn.rollback() # Undo changes if error
|
1399 |
+
raise
|
1400 |
+
```
|
1401 |
+
|
1402 |
+
### Query Performance
|
1403 |
+
|
1404 |
+
DuckDB is optimized for analytical queries. For best performance:
|
1405 |
+
|
1406 |
+
- Use appropriate data types
|
1407 |
+
- Create indexes for frequently queried columns
|
1408 |
+
- For large datasets, consider partitioning
|
1409 |
+
- Use prepared statements for repeated queries
|
1410 |
+
"""
|
1411 |
)
|
1412 |
return
|
1413 |
|
1414 |
|
1415 |
+
@app.cell(hide_code=True)
|
1416 |
+
def _interactive_dashboard(mo):
|
1417 |
+
mo.md(rf"""## 10. Interactive DuckDB Dashboard with Marimo and Plotly""")
|
1418 |
+
return
|
1419 |
+
|
1420 |
+
|
1421 |
+
@app.cell
|
1422 |
+
def _(mo):
|
1423 |
+
# Create an interactive filter for age range
|
1424 |
+
min_age = mo.ui.slider(20, 50, value=25, label="Minimum Age")
|
1425 |
+
max_age = mo.ui.slider(20, 50, value=50, label="Maximum Age")
|
1426 |
+
return max_age, min_age
|
1427 |
+
|
1428 |
+
|
1429 |
+
@app.cell
|
1430 |
+
def _(max_age, min_age, new_memory_db):
|
1431 |
+
# Create a function to filter data and update visualizations
|
1432 |
+
def get_filtered_data(min_val=min_age.value, max_val=max_age.value):
|
1433 |
+
# Get filtered data based on slider values using parameterized query for safety
|
1434 |
+
return new_memory_db.execute(
|
1435 |
+
"""
|
1436 |
+
SELECT
|
1437 |
+
id,
|
1438 |
+
name,
|
1439 |
+
age,
|
1440 |
+
email,
|
1441 |
+
account_balance,
|
1442 |
+
registration_date
|
1443 |
+
FROM users_memory
|
1444 |
+
WHERE age >= ? AND age <= ?
|
1445 |
+
ORDER BY age
|
1446 |
+
""",
|
1447 |
+
[min_val, max_val],
|
1448 |
+
).df()
|
1449 |
+
return (get_filtered_data,)
|
1450 |
+
|
1451 |
+
|
1452 |
+
@app.cell
|
1453 |
+
def _(get_filtered_data):
|
1454 |
+
def get_metrics(data=get_filtered_data()):
|
1455 |
+
return {
|
1456 |
+
"user count": len(data),
|
1457 |
+
"avg_balance": data["account_balance"].mean() if len(data) > 0 else 0,
|
1458 |
+
"total_balance": data["account_balance"].sum() if len(data) > 0 else 0,
|
1459 |
+
}
|
1460 |
+
return (get_metrics,)
|
1461 |
+
|
1462 |
+
|
1463 |
+
@app.cell
|
1464 |
+
def _(get_metrics, mo):
|
1465 |
+
def metrics_display(metrics=get_metrics()):
|
1466 |
+
return mo.hstack(
|
1467 |
+
[
|
1468 |
+
mo.vstack(
|
1469 |
+
[
|
1470 |
+
mo.md("### Selected Users"),
|
1471 |
+
mo.md(f"## {metrics['user count']}"),
|
1472 |
+
],
|
1473 |
+
align="center",
|
1474 |
+
),
|
1475 |
+
mo.vstack(
|
1476 |
+
[
|
1477 |
+
mo.md("### Average Balance"),
|
1478 |
+
mo.md(f"## ${metrics['avg_balance']:.2f}"),
|
1479 |
+
],
|
1480 |
+
align="center",
|
1481 |
+
),
|
1482 |
+
mo.vstack(
|
1483 |
+
[
|
1484 |
+
mo.md("### Total Balance"),
|
1485 |
+
mo.md(f"## ${metrics['total_balance']:.2f}"),
|
1486 |
+
],
|
1487 |
+
align="center",
|
1488 |
+
),
|
1489 |
+
],
|
1490 |
+
justify="space-between",
|
1491 |
+
gap=1.5,
|
1492 |
+
)
|
1493 |
+
return (metrics_display,)
|
1494 |
+
|
1495 |
+
|
1496 |
+
@app.cell
|
1497 |
+
def _(get_filtered_data, max_age, min_age, mo, plotly_express):
|
1498 |
+
def create_visualization(
|
1499 |
+
data=get_filtered_data(), min_val=min_age.value, max_val=max_age.value
|
1500 |
+
):
|
1501 |
+
if len(data) == 0:
|
1502 |
+
return mo.ui.text("No data available for the selected age range.")
|
1503 |
+
|
1504 |
+
# Create visualizations for filtered data
|
1505 |
+
fig1 = plotly_express.bar(
|
1506 |
+
data,
|
1507 |
+
x="name",
|
1508 |
+
y="account_balance",
|
1509 |
+
title=f"Account Balance by User (Age {min_val} - {max_val})",
|
1510 |
+
labels={"account_balance": "Account Balance ($)", "name": "User"},
|
1511 |
+
color="account_balance",
|
1512 |
+
color_continuous_scale=plotly_express.colors.sequential.Plasma,
|
1513 |
+
text_auto=".2s",
|
1514 |
+
)
|
1515 |
+
fig1.update_layout(
|
1516 |
+
height=400,
|
1517 |
+
xaxis_tickangle=-45,
|
1518 |
+
margin=dict(t=50, b=70, l=50, r=30),
|
1519 |
+
)
|
1520 |
+
fig1.update_traces(
|
1521 |
+
textposition="outside",
|
1522 |
+
)
|
1523 |
+
|
1524 |
+
fig2 = plotly_express.histogram(
|
1525 |
+
data,
|
1526 |
+
x="age",
|
1527 |
+
nbins=min(10, len(set(data["age"]))),
|
1528 |
+
title=f"Age Distribution (Age {min_val} - {max_val})",
|
1529 |
+
color_discrete_sequence=["#4C78A8"],
|
1530 |
+
opacity=0.8,
|
1531 |
+
histnorm="probability density",
|
1532 |
+
)
|
1533 |
+
fig2.update_layout(
|
1534 |
+
height=400,
|
1535 |
+
margin=dict(t=50, b=70, l=50, r=30),
|
1536 |
+
bargap=0.1,
|
1537 |
+
)
|
1538 |
+
|
1539 |
+
fig3 = plotly_express.scatter(
|
1540 |
+
data,
|
1541 |
+
x="age",
|
1542 |
+
y="account_balance",
|
1543 |
+
title=f"Age vs. Account Balance (Age {min_val} - {max_val})",
|
1544 |
+
labels={"account_balance": "Account Balance ($)", "age": "Age"},
|
1545 |
+
color="age",
|
1546 |
+
color_continuous_scale="Viridis",
|
1547 |
+
size_max=25,
|
1548 |
+
size="account_balance",
|
1549 |
+
hover_name="name",
|
1550 |
+
)
|
1551 |
+
fig3.update_layout(
|
1552 |
+
height=400,
|
1553 |
+
margin=dict(t=50, b=70, l=50, r=30),
|
1554 |
+
)
|
1555 |
+
|
1556 |
+
return mo.ui.tabs(
|
1557 |
+
{
|
1558 |
+
"Account Balance by User": mo.ui.plotly(fig1),
|
1559 |
+
"Age Distribution": mo.ui.plotly(fig2),
|
1560 |
+
"Age vs. Account Balance": mo.ui.plotly(fig3),
|
1561 |
+
}
|
1562 |
+
)
|
1563 |
+
return (create_visualization,)
|
1564 |
+
|
1565 |
+
|
1566 |
@app.cell
|
1567 |
+
def _(
|
1568 |
+
create_visualization,
|
1569 |
+
get_filtered_data,
|
1570 |
+
max_age,
|
1571 |
+
metrics_display,
|
1572 |
+
min_age,
|
1573 |
+
mo,
|
1574 |
+
):
|
1575 |
+
def dashboard(
|
1576 |
+
min_val=min_age.value,
|
1577 |
+
max_val=max_age.value,
|
1578 |
+
metrics=metrics_display(),
|
1579 |
+
data=get_filtered_data(),
|
1580 |
+
visualization=create_visualization()
|
1581 |
+
):
|
1582 |
+
return mo.vstack(
|
1583 |
+
[
|
1584 |
+
mo.md(f"### Interactive Dashboard (Age {min_val} - {max_val})"),
|
1585 |
+
metrics,
|
1586 |
+
mo.md("### Data Table"),
|
1587 |
+
mo.ui.table(data, page_size=5),
|
1588 |
+
mo.md("### Visualizations"),
|
1589 |
+
visualization,
|
1590 |
+
],
|
1591 |
+
gap=2
|
1592 |
+
)
|
1593 |
+
dashboard()
|
1594 |
+
return
|
1595 |
+
|
1596 |
+
|
1597 |
+
@app.cell(hide_code=True)
|
1598 |
+
def _conclusion(mo):
|
1599 |
+
mo.md(
|
1600 |
+
rf"""
|
1601 |
+
# Summary and Key Takeaways
|
1602 |
+
|
1603 |
+
In this notebook, we've explored DuckDB, a powerful embedded analytical database system. Here's what we covered:
|
1604 |
+
|
1605 |
+
1. **Connection types**: We learned the difference between in-memory databases (temporary) and file-based databases (persistent).
|
1606 |
+
|
1607 |
+
2. **Table creation**: We created tables with various data types, constraints, and primary keys.
|
1608 |
+
|
1609 |
+
3. **Data insertion**: We demonstrated different ways to insert data, including single inserts and bulk loading.
|
1610 |
+
|
1611 |
+
4. **SQL queries**: We executed various SQL queries directly and through Marimo's UI components.
|
1612 |
+
|
1613 |
+
5. **Integration with Polars**: We showed how DuckDB can work seamlessly with Polars DataFrames.
|
1614 |
+
|
1615 |
+
6. **Joins and relationships**: We performed JOIN operations between tables to combine related data.
|
1616 |
+
|
1617 |
+
7. **Aggregation**: We used aggregate functions to summarize and analyze data.
|
1618 |
+
|
1619 |
+
8. **Data conversion**: We converted DuckDB results to both Polars and Pandas DataFrames.
|
1620 |
+
|
1621 |
+
9. **Best practices**: We reviewed best practices for managing DuckDB connections and transactions.
|
1622 |
+
|
1623 |
+
10. **Visualization**: We created interactive visualizations and dashboards with Plotly and Marimo.
|
1624 |
+
|
1625 |
+
DuckDB is an excellent tool for data analysis, especially for analytical workloads. Its in-process nature makes it fast and easy to use, while its SQL compatibility makes it accessible for anyone familiar with SQL databases.
|
1626 |
+
|
1627 |
+
### Next Steps
|
1628 |
+
|
1629 |
+
- Try loading larger datasets into DuckDB
|
1630 |
+
- Experiment with more complex queries and window functions
|
1631 |
+
- Use DuckDB's COPY functionality to import/export data from/to files
|
1632 |
+
- Create more advanced interactive dashboards with Marimo and Plotly
|
1633 |
+
"""
|
1634 |
+
)
|
1635 |
+
return
|
1636 |
|
1637 |
|
1638 |
@app.cell(hide_code=True)
|
|
|
1640 |
import marimo as mo
|
1641 |
import duckdb
|
1642 |
import polars as pl
|
1643 |
+
import os
|
1644 |
+
from datetime import date
|
1645 |
+
import plotly.express as plotly_express
|
1646 |
+
import plotly.graph_objects as plotly_graph_objects
|
1647 |
+
import numpy as np
|
1648 |
+
return date, duckdb, mo, os, pl, plotly_express
|
1649 |
|
1650 |
|
1651 |
if __name__ == "__main__":
|