Spaces:
Running
Running
Azmi-84
commited on
Commit
·
dd84d5b
1
Parent(s):
3cd7fd0
Add DuckDB getting started guide with interactive examples. This commit introduces a new Python script that serves as a comprehensive guide to getting started with DuckDB. It includes interactive examples for database connections, table creation, data insertion, basic queries, and integration with Polars. The guide aims to facilitate learning and experimentation with DuckDB's features in a user-friendly manner.
Browse files- duckdb/01_getting_started.py +242 -0
duckdb/01_getting_started.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import marimo
|
2 |
+
|
3 |
+
__generated_with = "0.11.30"
|
4 |
+
app = marimo.App(width="medium")
|
5 |
+
|
6 |
+
|
7 |
+
@app.cell(hide_code=True)
|
8 |
+
def _introduction(mo):
|
9 |
+
mo.md(
|
10 |
+
"""
|
11 |
+
# DuckDB: An Embeddable Analytical Database System
|
12 |
+
|
13 |
+
### What is DuckDB?
|
14 |
+
|
15 |
+
[DuckDB](https://duckdb.org/) is a high-performance, in-process analytical database management system (DBMS) designed for speed and simplicity. It's particularly well-suited for analytical query workloads, offering a robust SQL interface and efficient data processing capabilities. This document highlights key features and aspects of DuckDB relevant for a course on database systems or data analysis.
|
16 |
+
|
17 |
+
### [Key Features](https://duckdb.org/why_duckdb):
|
18 |
+
|
19 |
+
- In-Process: Easy integration, zero external dependencies.
|
20 |
+
- Portable: Works on various OS and architectures.
|
21 |
+
- Columnar Storage: Efficient for analytical queries.
|
22 |
+
- Vectorized Execution: Speeds up data processing.
|
23 |
+
- ACID Transactions: Ensures data integrity.
|
24 |
+
- Multi-Language APIs: Python, R, Java, etc.
|
25 |
+
|
26 |
+
### [Use Cases](https://github.com/davidgasquez/awesome-duckdb?tab=readme-ov-file):
|
27 |
+
|
28 |
+
- Data analysis and exploration
|
29 |
+
- Embedded analytics in applications
|
30 |
+
- ETL (Extract, Transform, Load) processes
|
31 |
+
- Data science and machine learning workflows
|
32 |
+
- Rapid prototyping of data analysis pipelines.
|
33 |
+
|
34 |
+
### [Installation](https://duckdb.org/docs/installation/?version=stable&environment=python):
|
35 |
+
|
36 |
+
- The DuckDB Python API can be installed using pip:
|
37 |
+
```
|
38 |
+
pip install duckdb
|
39 |
+
```
|
40 |
+
- It is also possible to install DuckDB using conda:
|
41 |
+
```
|
42 |
+
conda install python-duckdb -c conda-forge.
|
43 |
+
```
|
44 |
+
|
45 |
+
**Python version:** DuckDB requires Python 3.7 or newer.
|
46 |
+
"""
|
47 |
+
)
|
48 |
+
return
|
49 |
+
|
50 |
+
|
51 |
+
@app.cell(hide_code=True)
|
52 |
+
def _(mo):
|
53 |
+
mo.md(
|
54 |
+
r"""
|
55 |
+
# [1. DuckDB Basic Connection](https://duckdb.org/docs/stable/connect/overview.html)
|
56 |
+
|
57 |
+
DuckDB can run entirely in your computer's RAM, known as in-memory mode, which you can enable by using `:memory:` as the database name or by not providing a database file. It's crucial to understand that this means all data is temporary and will be completely erased when the program closes, as it isn't saved to disk.
|
58 |
+
"""
|
59 |
+
)
|
60 |
+
return
|
61 |
+
|
62 |
+
|
63 |
+
@app.cell
|
64 |
+
def _database_connection(duckdb):
|
65 |
+
# Create a connection to an in-memory database
|
66 |
+
database_connection = duckdb.connect(database=":memory:")
|
67 |
+
print(
|
68 |
+
f"DuckDB version: {database_connection.execute('SELECT version()').fetchone()[0]}"
|
69 |
+
)
|
70 |
+
return (database_connection,)
|
71 |
+
|
72 |
+
|
73 |
+
@app.cell(hide_code=True)
|
74 |
+
def _(mo):
|
75 |
+
mo.md(
|
76 |
+
r"""# [2. Creating Tables](https://duckdb.org/docs/stable/sql/statements/create_table.html)"""
|
77 |
+
)
|
78 |
+
return
|
79 |
+
|
80 |
+
|
81 |
+
@app.cell
|
82 |
+
def _create_users_table(database_connection):
|
83 |
+
database_connection.execute(
|
84 |
+
"""
|
85 |
+
CREATE TABLE users (
|
86 |
+
id INTEGER,
|
87 |
+
name VARCHAR,
|
88 |
+
age INTEGER,
|
89 |
+
registration_date DATE
|
90 |
+
)
|
91 |
+
"""
|
92 |
+
)
|
93 |
+
return
|
94 |
+
|
95 |
+
|
96 |
+
@app.cell(hide_code=True)
|
97 |
+
def _(mo):
|
98 |
+
mo.md(
|
99 |
+
r"""# [3. Instering data into table](https://duckdb.org/docs/stable/sql/statements/insert)"""
|
100 |
+
)
|
101 |
+
return
|
102 |
+
|
103 |
+
|
104 |
+
@app.cell
|
105 |
+
def _insert_user_data(database_connection):
|
106 |
+
database_connection.execute(
|
107 |
+
"""
|
108 |
+
INSERT INTO users VALUES
|
109 |
+
(1, 'Alice', 25, '2021-01-01'),
|
110 |
+
(2, 'Bob', 30, '2021-02-01'),
|
111 |
+
(3, 'Charlie', 35, '2021-03-01')
|
112 |
+
"""
|
113 |
+
)
|
114 |
+
return
|
115 |
+
|
116 |
+
|
117 |
+
@app.cell(hide_code=True)
|
118 |
+
def _(mo):
|
119 |
+
mo.md(
|
120 |
+
r"""# [4. Basic Queries](https://duckdb.org/docs/stable/sql/query_syntax/select)"""
|
121 |
+
)
|
122 |
+
return
|
123 |
+
|
124 |
+
|
125 |
+
@app.cell
|
126 |
+
def _basic_queries(database_connection):
|
127 |
+
# Select all data
|
128 |
+
user_results = database_connection.execute("SELECT * FROM users").fetchall()
|
129 |
+
for user_row in user_results:
|
130 |
+
print(user_row)
|
131 |
+
return user_results, user_row
|
132 |
+
|
133 |
+
|
134 |
+
@app.cell(hide_code=True)
|
135 |
+
def _(mo):
|
136 |
+
mo.md(
|
137 |
+
r"""# [5. Working with Polars](https://duckdb.org/docs/stable/guides/python/polars.html)"""
|
138 |
+
)
|
139 |
+
return
|
140 |
+
|
141 |
+
|
142 |
+
@app.cell
|
143 |
+
def _polars_dataframe(database_connection, pl):
|
144 |
+
# Create a Polars DataFrame
|
145 |
+
polars_dataframe = pl.DataFrame(
|
146 |
+
{
|
147 |
+
"id": [1, 2, 3],
|
148 |
+
"name": ["Alice", "Bob", "Charlie"],
|
149 |
+
"age": [25, 30, 35],
|
150 |
+
"registration_date": ["2021-01-01", "2021-02-01", "2021-03-01"],
|
151 |
+
}
|
152 |
+
)
|
153 |
+
|
154 |
+
# Register the Polars DataFrame as a DuckDB table
|
155 |
+
database_connection.register("users_polars", polars_dataframe)
|
156 |
+
|
157 |
+
# Query the Polars DataFrame using DuckDB
|
158 |
+
polars_results = database_connection.execute(
|
159 |
+
"SELECT * FROM users_polars"
|
160 |
+
).fetchall()
|
161 |
+
print("New Table:")
|
162 |
+
for polars_row in polars_results:
|
163 |
+
print(polars_row)
|
164 |
+
return polars_dataframe, polars_results, polars_row
|
165 |
+
|
166 |
+
|
167 |
+
@app.cell(hide_code=True)
|
168 |
+
def _(mo):
|
169 |
+
mo.md(
|
170 |
+
r"""# [6. Join Operations](https://duckdb.org/docs/stable/guides/performance/join_operations.html)"""
|
171 |
+
)
|
172 |
+
return
|
173 |
+
|
174 |
+
|
175 |
+
@app.cell
|
176 |
+
def _join_operations(database_connection):
|
177 |
+
join_results = database_connection.execute(
|
178 |
+
"""
|
179 |
+
SELECT u.id, u.name, u.age, nu.registration_date
|
180 |
+
FROM users u
|
181 |
+
JOIN users_polars nu ON u.age < nu.age
|
182 |
+
"""
|
183 |
+
)
|
184 |
+
print("Join Result:")
|
185 |
+
for join_row in join_results.fetchall():
|
186 |
+
print(join_row)
|
187 |
+
return join_results, join_row
|
188 |
+
|
189 |
+
|
190 |
+
@app.cell(hide_code=True)
|
191 |
+
def _(mo):
|
192 |
+
mo.md(
|
193 |
+
r"""# [7. Aggregate Functions](https://duckdb.org/docs/stable/sql/functions/aggregates.html)"""
|
194 |
+
)
|
195 |
+
return
|
196 |
+
|
197 |
+
|
198 |
+
@app.cell
|
199 |
+
def _aggregate_functions(database_connection):
|
200 |
+
aggregate_results = database_connection.execute(
|
201 |
+
"""
|
202 |
+
SELECT AVG(age) as avg_age, MAX(age) as max_age, MIN(age) as min_age
|
203 |
+
FROM (SELECT * FROM users UNION ALL SELECT * FROM users_polars) AS all_users
|
204 |
+
"""
|
205 |
+
).fetchall()
|
206 |
+
print(
|
207 |
+
f"Average Age: {aggregate_results[0][0]:.1f}, "
|
208 |
+
f"Max Age: {aggregate_results[0][1]}, "
|
209 |
+
f"Min Age: {aggregate_results[0][2]}"
|
210 |
+
)
|
211 |
+
return (aggregate_results,)
|
212 |
+
|
213 |
+
|
214 |
+
@app.cell(hide_code=True)
|
215 |
+
def _(mo):
|
216 |
+
mo.md(
|
217 |
+
r"""# [8. Converting Results to Polars DataFrames](https://duckdb.org/docs/stable/guides/python/polars.html)"""
|
218 |
+
)
|
219 |
+
return
|
220 |
+
|
221 |
+
|
222 |
+
@app.cell
|
223 |
+
def _convert_to_polars(database_connection):
|
224 |
+
# -- 8. Converting Results to Polars DataFrames --
|
225 |
+
# Convert the result to a Polars DataFrame
|
226 |
+
polars_result_df = database_connection.execute("SELECT * FROM users").df()
|
227 |
+
print("Result as Polars DataFrame:")
|
228 |
+
print(polars_result_df)
|
229 |
+
return (polars_result_df,)
|
230 |
+
|
231 |
+
|
232 |
+
@app.cell(hide_code=True)
|
233 |
+
def _():
|
234 |
+
import marimo as mo
|
235 |
+
import duckdb
|
236 |
+
import polars as pl
|
237 |
+
|
238 |
+
return duckdb, mo, pl
|
239 |
+
|
240 |
+
|
241 |
+
if __name__ == "__main__":
|
242 |
+
app.run()
|