lshzhm's picture
Update app.py
7808cc2
import os
os.system("pip install -U gradio")
import sys
sys.path.insert(0, "./src/")
import spaces
import logging
from datetime import datetime
from pathlib import Path
import gradio as gr
import torch
import torchaudio
import tempfile
import requests
import shutil
import numpy as np
from huggingface_hub import hf_hub_download, snapshot_download
import gc
if True:
model_path = "./ckpts/"
if not os.path.exists(model_path):
os.makedirs(model_path)
#file_path = hf_hub_download(repo_id="lshzhm/Video-to-Audio-and-Piano", filename=".", local_dir=model_path)
file_path = snapshot_download(repo_id="lshzhm/Video-to-Audio-and-Piano", local_dir=model_path)
print(f"Model saved at: {file_path}")
device = "cpu"
else:
device = "cuda"
log = logging.getLogger()
import torch
from e2_tts_pytorch.e2_tts_crossatt3 import E2TTS, DurationPredictor
from e2_tts_pytorch.e2_tts_crossatt3 import MelSpec, EncodecWrapper
from torch.optim import Adam
from torch.utils.data import DataLoader, Dataset
from datasets import load_dataset
from e2_tts_pytorch.trainer_multigpus_alldatas3 import HFDataset, Text2AudioDataset
from einops import einsum, rearrange, repeat, reduce, pack, unpack
import torchaudio
from datetime import datetime
import json
import numpy as np
import os
from moviepy.editor import VideoFileClip, AudioFileClip
import traceback
ckpt = "./ckpts/piano5_4_2_8000.pt"
audiocond_drop_prob = 1.1
#audiocond_drop_prob = 0.3
#cond_proj_in_bias = True
#cond_drop_prob = 1.1
cond_drop_prob = -0.1
prompt_drop_prob = -0.1
#prompt_drop_prob = 1.1
video_text = True
def read_audio_from_video(video_path):
if video_path.startswith("/ailab-train/speech/zhanghaomin/VGGSound/"):
audio_path = video_path.replace("/video/", "/audio/").replace(".mp4", ".wav")
else:
audio_path = video_path.replace(".mp4", ".generated.wav")
if os.path.exists(audio_path):
# print("video wav exist", audio_path)
waveform, sr = torchaudio.load(audio_path)
else:
# print("video wav not exist", video_path)
try:
clip = VideoFileClip(video_path)
return torch.zeros(1, int(24000 * min(clip.duration, 30.0)))
clip = AudioFileClip(video_path)
sound_array = np.array(list(clip.iter_frames()))
waveform = torch.from_numpy(sound_array).transpose(0, 1).to(torch.float32)
waveform = waveform[0:1, :]
if clip.fps != torch_tools.new_freq:
waveform = torchaudio.functional.resample(waveform, orig_freq=clip.fps, new_freq=torch_tools.new_freq)
waveform = torch_tools.normalize_wav(waveform)
####torchaudio.save(audio_path, waveform, torch_tools.new_freq)
except:
print("Error read_audio_from_video", audio_path)
traceback.print_exc()
return None
return waveform
def load(device):
#duration_predictor = DurationPredictor(
# transformer = dict(
# dim = 512,
# depth = 6,
# )
#)
duration_predictor = None
e2tts = E2TTS(
duration_predictor = duration_predictor,
transformer = dict(
#depth = 12,
#dim = 512,
#heads = 8,
#dim_head = 64,
depth = 12,
dim = 1024,
dim_text = 1280,
heads = 16,
dim_head = 64,
if_text_modules = (cond_drop_prob < 1.0),
if_cross_attn = (prompt_drop_prob < 1.0),
if_audio_conv = True,
if_text_conv = True,
),
#tokenizer = 'char_utf8',
tokenizer = 'phoneme_zh',
audiocond_drop_prob = audiocond_drop_prob,
cond_drop_prob = cond_drop_prob,
prompt_drop_prob = prompt_drop_prob,
frac_lengths_mask = (0.7, 1.0),
#audiocond_snr = None,
#audiocond_snr = (5.0, 10.0),
if_cond_proj_in = (audiocond_drop_prob < 1.0),
#cond_proj_in_bias = cond_proj_in_bias,
if_embed_text = (cond_drop_prob < 1.0) and (not video_text),
if_text_encoder2 = (prompt_drop_prob < 1.0),
if_clip_encoder = video_text,
video_encoder = "clip_vit",
pretrained_vocos_path = 'facebook/encodec_24khz',
num_channels = 128,
sampling_rate = 24000,
)
e2tts = e2tts.to(device)
#checkpoint = torch.load("/ckptstorage/zhanghaomin/e2/e2_tts_experiment_v2a_encodec/3000.pt", map_location="cpu")
#checkpoint = torch.load("/ckptstorage/zhanghaomin/e2/e2_tts_experiment_v2a_encodec_more/500.pt", map_location="cpu")
#checkpoint = torch.load("/ckptstorage/zhanghaomin/e2/e2_tts_experiment_v2a_encodec_more_more/98500.pt", map_location="cpu")
#checkpoint = torch.load("/ckptstorage/zhanghaomin/e2/e2_tts_experiment_v2a_encodec_more_more_more/190000.pt", map_location="cpu")
checkpoint = torch.load(ckpt, map_location="cpu")
#for key in list(checkpoint['model_state_dict'].keys()):
# if key.startswith('mel_spec.'):
# del checkpoint['model_state_dict'][key]
# if key.startswith('transformer.text_registers'):
# del checkpoint['model_state_dict'][key]
e2tts.load_state_dict(checkpoint['model_state_dict'], strict=False)
del checkpoint
e2tts.vocos = EncodecWrapper("facebook/encodec_24khz")
for param in e2tts.vocos.parameters():
param.requires_grad = False
e2tts.vocos.eval()
e2tts.vocos.to(device)
#dataset = HFDataset(load_dataset("parquet", data_files={"test": "/ckptstorage/zhanghaomin/tts/GLOBE/data/test-*.parquet"})["test"])
#sample = dataset[1]
#mel_spec_raw = sample["mel_spec"].unsqueeze(0)
#mel_spec = rearrange(mel_spec_raw, 'b d n -> b n d')
#print(mel_spec.shape, sample["text"])
#out_dir = "/user-fs/zhanghaomin/v2a_generated/v2a_190000_tests/"
#out_dir = "/user-fs/zhanghaomin/v2a_generated/tv2a_98500_clips/"
#if not os.path.exists(out_dir):
# os.makedirs(out_dir)
#bs = list(range(10)) + [14,16]
#bs = None
#SCORE_THRESHOLD_TRAIN = '{"/zhanghaomin/datas/audiocaps": -9999.0, "/radiostorage/WavCaps": -9999.0, "/radiostorage/AudioGroup": 9999.0, "/ckptstorage/zhanghaomin/audioset": -9999.0, "/ckptstorage/zhanghaomin/BBCSoundEffects": 9999.0, "/ckptstorage/zhanghaomin/CLAP_freesound": 9999.0, "/zhanghaomin/datas/musiccap": -9999.0, "/ckptstorage/zhanghaomin/TangoPromptBank": -9999.0, "audioset": "af-audioset", "/ckptstorage/zhanghaomin/audiosetsl": 9999.0, "/ckptstorage/zhanghaomin/giantsoundeffects": -9999.0}' # /root/datasets/ /radiostorage/
#SCORE_THRESHOLD_TRAIN = json.loads(SCORE_THRESHOLD_TRAIN)
#for key in SCORE_THRESHOLD_TRAIN:
# if key == "audioset":
# continue
# if SCORE_THRESHOLD_TRAIN[key] <= -9000.0:
# SCORE_THRESHOLD_TRAIN[key] = -np.inf
#print("SCORE_THRESHOLD_TRAIN", SCORE_THRESHOLD_TRAIN)
stft = EncodecWrapper("facebook/encodec_24khz")
####eval_dataset = Text2AudioDataset(None, "val_instruments", None, None, None, -1, -1, stft, 0, True, SCORE_THRESHOLD_TRAIN, "/zhanghaomin/codes2/audiocaption/msclapcap_v1.list", -1.0, 1, 1, [drop_prompt], None, 0, vgg_test=[test_scp, start, end, step], video_encoder="clip_vit")
####eval_dataset = Text2AudioDataset(None, "val_vggsound", None, None, None, -1, -1, stft, 0, True, SCORE_THRESHOLD_TRAIN, "/zhanghaomin/codes2/audiocaption/msclapcap_v1.list", -1.0, 1, 1, [drop_prompt], None, 0, vgg_test=[test_scp, start, end, step], video_encoder="clip_vit")
####eval_dataloader = DataLoader(eval_dataset, shuffle=False, batch_size=1, collate_fn=eval_dataset.collate_fn, num_workers=1, drop_last=False, pin_memory=True)
return e2tts, stft
e2tts, stft = load(device)
gc.collect()
def run(e2tts, stft, arg1, arg2, arg3, arg4, piano):
try:
fbanks = []
fbank_lens = []
video_paths = []
text_selected = []
for audio, txt in [[arg1, arg2]]:
waveform = read_audio_from_video(audio)
if waveform is None:
continue
# length = self.val_length
# waveform = waveform[:, :length*torch_tools.hop_size]
fbank = stft(waveform).transpose(-1, -2)
fbanks.append(fbank)
fbank_lens.append(fbank.shape[1])
video_paths.append(audio)
text_selected.append(txt)
# print("stft", waveform.shape, fbank.shape)
# max_length = max(fbank_lens)
# for i in range(len(fbanks)):
# if fbanks[i].shape[1] < max_length:
# fbanks[i] = torch.cat([fbanks[i], torch.zeros(fbanks[i].shape[0], max_length-fbanks[i].shape[1], fbanks[i].shape[2])], 1)
mel = torch.cat(fbanks, 0)
mel_len = torch.Tensor(fbank_lens).to(torch.int32)
frames, midis = E2TTS.encode_video_frames(video_paths, mel.shape[1], piano)
batches = [[text_selected, mel, video_paths, mel_len, [arg3], None, frames, midis]]
i = 0
for b, batch in enumerate(batches):
#if (bs is not None) and (b not in bs):
# continue
#text, mel_spec, _, mel_lengths = batch
text, mel_spec, video_paths, mel_lengths, video_drop_prompt, audio_drop_prompt, frames, midis = batch
print(mel_spec.shape, mel_lengths, text, video_paths, video_drop_prompt, audio_drop_prompt, frames.shape if frames is not None and not isinstance(frames, float) else frames, midis.shape if midis is not None else midis, midis.sum() if midis is not None else midis)
text = text[i:i+1]
mel_spec = mel_spec[i:i+1, 0:mel_lengths[i], :]
mel_lengths = mel_lengths[i:i+1]
video_paths = video_paths[i:i+1]
#video_path = out_dir + video_paths[0].replace("/", "__")
#audio_path = video_path.replace(".mp4", ".wav")
video_path = video_paths[0]
audio_path = video_path + ".wav"
name = video_paths[0].rsplit("/", 1)[1].rsplit(".", 1)[0]
num = 1
l = mel_lengths[0]
#cond = mel_spec.repeat(num, 1, 1)
cond = torch.randn(num, l, e2tts.num_channels)
duration = torch.tensor([l]*num, dtype=torch.int32)
lens = torch.tensor([l]*num, dtype=torch.int32)
print(datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3], "start")
#e2tts.sample(text=[""]*num, duration=duration.to("cuda"), lens=lens.to("cuda"), cond=cond.to("cuda"), save_to_filename="test.wav", steps=16, cfg_strength=3.0, remove_parallel_component=False, sway_sampling=True)
outputs = e2tts.sample(text=None, duration=duration.to(e2tts.device), lens=lens.to(e2tts.device),
cond=cond.to(e2tts.device), save_to_filename=audio_path, steps=arg4, prompt=text*num,
video_drop_prompt=video_drop_prompt, audio_drop_prompt=audio_drop_prompt, cfg_strength=2.0,
remove_parallel_component=False, sway_sampling=True, video_paths=video_paths, return_raw_output=True,
frames=(frames if frames is None or isinstance(frames, float) else frames.to(e2tts.device)), midis=(midis if midis is None else midis.to(e2tts.device)))
print(datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3], "sample")
#one_audio = e2tts.vocos.decode(mel_spec_raw.to("cuda"))
#one_audio = e2tts.vocos.decode(cond.transpose(-1,-2).to("cuda"))
#print(datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3], "vocoder")
#torchaudio.save("ref.wav", one_audio.detach().cpu(), sample_rate = e2tts.sampling_rate)
outputs = outputs.reshape(1, -1, outputs.shape[-1])
audio_final = e2tts.vocos.decode(outputs.transpose(-1,-2))
audio_final = audio_final.detach().cpu()
torchaudio.save(audio_path, audio_final, sample_rate = e2tts.sampling_rate)
#os.system("cp \"" + video_paths[0] + "\" \"" + video_path + "\"")
video = VideoFileClip(video_path)
audio = AudioFileClip(audio_path)
print("duration", video.duration, audio.duration)
if video.duration >= audio.duration:
video = video.subclip(0, audio.duration)
else:
audio = audio.subclip(0, video.duration)
final_video = video.set_audio(audio)
#video_path_gen = video_path.replace(".mp4", ".v2a.mp4")
video_path_gen = video_path + ".mp4"
final_video.write_videofile(video_path_gen, codec="libx264", audio_codec="aac")
print("paths", video_path, audio_path, video_path_gen)
return video_path_gen
except Exception as e:
print("Exception", e)
traceback.print_exc()
if False:
if not os.path.exists(out_dir+"groundtruth/"):
os.makedirs(out_dir+"groundtruth/")
if not os.path.exists(out_dir+"generated/"):
os.makedirs(out_dir+"generated/")
duration_gt = video.duration
duration_gr = final_video.duration
duration = min(duration_gt, duration_gr)
audio_gt = video.audio.subclip(0, duration)
audio_gr = final_video.audio.subclip(0, duration)
audio_gt.write_audiofile(out_dir+"groundtruth/"+name+".wav", fps=24000)
audio_gr.write_audiofile(out_dir+"generated/"+name+".wav", fps=24000)
#@spaces.GPU(duration=120)
def video_to_audio(video: gr.Video, prompt: str, num_steps: int):
video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
if video.startswith("http"):
data = requests.get(video, timeout=60).content
with open(video_path, "wb") as fw:
fw.write(data)
else:
shutil.copy(video, video_path)
video_save_path = run(e2tts, stft, video_path, prompt, len(prompt)==0, num_steps, False)
gc.collect()
return video_save_path
def video_to_piano(video: gr.Video, prompt: str, num_steps: int):
video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
if video.startswith("http"):
data = requests.get(video, timeout=60).content
with open(video_path, "wb") as fw:
fw.write(data)
else:
shutil.copy(video, video_path)
video_save_path = run(e2tts, stft, video_path, prompt, len(prompt)==0, num_steps, True)
gc.collect()
return video_save_path
video_to_audio_tab = gr.Interface(
fn=video_to_audio,
description="""
Paper: <a href="https://arxiv.org/abs/2503.22200">https://arxiv.org/abs/2503.22200</a><br>
Code: <a href="https://github.com/acappemin/Video-to-Audio-and-Piano">https://github.com/acappemin/Video-to-Audio-and-Piano</a><br>
Project page: <a href="https://acappemin.github.io/Video-to-Audio-and-Piano.github.io">https://acappemin.github.io/Video-to-Audio-and-Piano.github.io</a><br>
Models: <a href="https://huggingface.co/lshzhm/Video-to-Audio-and-Piano/tree/main">https://huggingface.co/lshzhm/Video-to-Audio-and-Piano/tree/main</a><br>
""",
inputs=[
gr.Video(label="Input Video"),
gr.Text(label='Video-to-Audio Text Prompt'),
gr.Number(label='Video-to-Audio Num Steps', value=25, precision=0, minimum=1),
],
outputs=[
gr.Video(label="Video-to-Audio Output"),
],
cache_examples=False,
title='Video-to-Audio',
examples=[
[
'./tests/VGGSound/video/1u1orBeV4xI_000428.mp4',
'the sound of ripping paper',
25,
],
[
'./tests/VGGSound/video/1uCzQCdCC1U_000170.mp4',
'the sound of race car, auto racing',
25,
],
])
video_to_piano_tab = gr.Interface(
fn=video_to_piano,
description="""
Paper: <a href="https://arxiv.org/abs/2503.22200">https://arxiv.org/abs/2503.22200</a><br>
Code: <a href="https://github.com/acappemin/Video-to-Audio-and-Piano">https://github.com/acappemin/Video-to-Audio-and-Piano</a><br>
Project page: <a href="https://acappemin.github.io/Video-to-Audio-and-Piano.github.io">https://acappemin.github.io/Video-to-Audio-and-Piano.github.io</a><br>
Models: <a href="https://huggingface.co/lshzhm/Video-to-Audio-and-Piano/tree/main">https://huggingface.co/lshzhm/Video-to-Audio-and-Piano/tree/main</a><br>
""",
inputs=[
gr.Video(label="Input Video"),
gr.Text(label='Video-to-Audio Text Prompt'),
gr.Number(label='Video-to-Audio Num Steps', value=25, precision=0, minimum=1),
],
outputs=[
gr.Video(label="Video-to-Piano Output"),
],
cache_examples=False,
title='Video-to-Piano',
examples=[
[
'./tests/piano_2h_cropped2_cuts/nwwHuxHMIpc.00000001.mp4',
'the sound of playing piano',
25,
],
[
'./tests/piano_2h_cropped2_cuts/u5nBBJndN3I.00000004.mp4',
'the sound of playing piano',
25,
],
])
if __name__ == "__main__":
gr.TabbedInterface([video_to_audio_tab, video_to_piano_tab], ['Video-to-Audio', 'Video-to-Piano']).queue(max_size=1).launch()