File size: 17,835 Bytes
1991049
e5b1a75
 
1991049
5688bca
 
1991049
e5b1a75
1991049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e30d6e
1991049
cfb9de6
 
1991049
5688bca
 
1991049
5688bca
 
1991049
5688bca
 
 
 
7b09efd
 
 
 
1991049
 
 
 
7e30d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b967777
 
 
7e30d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b09efd
7e30d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b09efd
7e30d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
671a2c8
 
7e30d6e
 
 
 
7b09efd
7e30d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b09efd
cfb9de6
7e30d6e
 
14cb705
7e30d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14cb705
7e30d6e
 
 
 
 
fadbcfe
 
7e30d6e
 
 
 
 
 
 
 
 
e9aa627
7e30d6e
 
 
 
 
 
 
 
7d26b43
7e30d6e
 
 
 
cfb9de6
 
7e30d6e
 
 
 
 
 
 
 
 
 
 
7d26b43
7e30d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
671a2c8
7e30d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991049
 
 
7e30d6e
 
671a2c8
 
 
 
 
 
 
14cb705
cfb9de6
7e30d6e
 
1991049
 
 
 
7e30d6e
 
671a2c8
 
 
 
 
 
 
14cb705
cfb9de6
7e30d6e
 
1991049
 
7e30d6e
 
1991049
7808cc2
737928d
7808cc2
 
1991049
 
 
 
b56a7d1
1991049
 
 
 
 
754a4b6
1991049
 
 
7e30d6e
b56a7d1
1991049
 
 
7e30d6e
b56a7d1
7e30d6e
 
 
 
 
 
 
7808cc2
737928d
7808cc2
 
7e30d6e
 
 
 
b56a7d1
7e30d6e
 
 
 
 
754a4b6
7e30d6e
 
8ba3051
7e30d6e
b56a7d1
7e30d6e
 
8ba3051
7e30d6e
b56a7d1
1991049
 
 
 
 
83fbe05
1991049
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import os
os.system("pip install -U gradio")


import sys
sys.path.insert(0, "./src/")


import spaces
import logging
from datetime import datetime
from pathlib import Path

import gradio as gr
import torch
import torchaudio

import tempfile

import requests
import shutil
import numpy as np

from huggingface_hub import hf_hub_download, snapshot_download

import gc


if True:
    model_path = "./ckpts/"

    if not os.path.exists(model_path):
        os.makedirs(model_path)

    #file_path = hf_hub_download(repo_id="lshzhm/Video-to-Audio-and-Piano", filename=".", local_dir=model_path)
    file_path = snapshot_download(repo_id="lshzhm/Video-to-Audio-and-Piano", local_dir=model_path)

    print(f"Model saved at: {file_path}")
    
    device = "cpu"
else:
    device = "cuda"

log = logging.getLogger()


import torch
from e2_tts_pytorch.e2_tts_crossatt3 import E2TTS, DurationPredictor
from e2_tts_pytorch.e2_tts_crossatt3 import MelSpec, EncodecWrapper

from torch.optim import Adam
from torch.utils.data import DataLoader, Dataset
from datasets import load_dataset

from e2_tts_pytorch.trainer_multigpus_alldatas3 import HFDataset, Text2AudioDataset

from einops import einsum, rearrange, repeat, reduce, pack, unpack
import torchaudio

from datetime import datetime
import json
import numpy as np
import os
from moviepy.editor import VideoFileClip, AudioFileClip
import traceback


ckpt = "./ckpts/piano5_4_2_8000.pt"


audiocond_drop_prob = 1.1
#audiocond_drop_prob = 0.3
#cond_proj_in_bias = True
#cond_drop_prob = 1.1
cond_drop_prob = -0.1
prompt_drop_prob = -0.1
#prompt_drop_prob = 1.1
video_text = True


def read_audio_from_video(video_path):
    if video_path.startswith("/ailab-train/speech/zhanghaomin/VGGSound/"):
        audio_path = video_path.replace("/video/", "/audio/").replace(".mp4", ".wav")
    else:
        audio_path = video_path.replace(".mp4", ".generated.wav")
    if os.path.exists(audio_path):
        # print("video wav exist", audio_path)
        waveform, sr = torchaudio.load(audio_path)
    else:
        # print("video wav not exist", video_path)
        try:
            clip = VideoFileClip(video_path)
            return torch.zeros(1, int(24000 * min(clip.duration, 30.0)))
            clip = AudioFileClip(video_path)
            sound_array = np.array(list(clip.iter_frames()))
            waveform = torch.from_numpy(sound_array).transpose(0, 1).to(torch.float32)
            waveform = waveform[0:1, :]
            if clip.fps != torch_tools.new_freq:
                waveform = torchaudio.functional.resample(waveform, orig_freq=clip.fps, new_freq=torch_tools.new_freq)
            waveform = torch_tools.normalize_wav(waveform)
            ####torchaudio.save(audio_path, waveform, torch_tools.new_freq)
        except:
            print("Error read_audio_from_video", audio_path)
            traceback.print_exc()
            return None
    return waveform


def load(device):
    #duration_predictor = DurationPredictor(
    #    transformer = dict(
    #        dim = 512,
    #        depth = 6,
    #    )
    #)
    duration_predictor = None

    e2tts = E2TTS(
        duration_predictor = duration_predictor,
        transformer = dict(
            #depth = 12,
            #dim = 512,
            #heads = 8,
            #dim_head = 64,
            depth = 12,
            dim = 1024,
            dim_text = 1280,
            heads = 16,
            dim_head = 64,
            if_text_modules = (cond_drop_prob < 1.0),
            if_cross_attn = (prompt_drop_prob < 1.0),
            if_audio_conv = True,
            if_text_conv = True,
        ),
        #tokenizer = 'char_utf8',
        tokenizer = 'phoneme_zh',
        audiocond_drop_prob = audiocond_drop_prob,
        cond_drop_prob = cond_drop_prob,
        prompt_drop_prob = prompt_drop_prob,
        frac_lengths_mask = (0.7, 1.0),
        #audiocond_snr = None,
        #audiocond_snr = (5.0, 10.0),
        
        if_cond_proj_in = (audiocond_drop_prob < 1.0),
        #cond_proj_in_bias = cond_proj_in_bias,
        if_embed_text = (cond_drop_prob < 1.0) and (not video_text),
        if_text_encoder2 = (prompt_drop_prob < 1.0),
        if_clip_encoder = video_text,
        video_encoder = "clip_vit",
        
        pretrained_vocos_path = 'facebook/encodec_24khz',
        num_channels = 128,
        sampling_rate = 24000,
    )
    e2tts = e2tts.to(device)

    #checkpoint = torch.load("/ckptstorage/zhanghaomin/e2/e2_tts_experiment_v2a_encodec/3000.pt", map_location="cpu")
    #checkpoint = torch.load("/ckptstorage/zhanghaomin/e2/e2_tts_experiment_v2a_encodec_more/500.pt", map_location="cpu")
    #checkpoint = torch.load("/ckptstorage/zhanghaomin/e2/e2_tts_experiment_v2a_encodec_more_more/98500.pt", map_location="cpu")
    #checkpoint = torch.load("/ckptstorage/zhanghaomin/e2/e2_tts_experiment_v2a_encodec_more_more_more/190000.pt", map_location="cpu")
    checkpoint = torch.load(ckpt, map_location="cpu")

    #for key in list(checkpoint['model_state_dict'].keys()):
    #    if key.startswith('mel_spec.'):
    #        del checkpoint['model_state_dict'][key]
    #    if key.startswith('transformer.text_registers'):
    #        del checkpoint['model_state_dict'][key]
    e2tts.load_state_dict(checkpoint['model_state_dict'], strict=False)
    
    del checkpoint
    
    e2tts.vocos = EncodecWrapper("facebook/encodec_24khz")
    for param in e2tts.vocos.parameters():
        param.requires_grad = False
    e2tts.vocos.eval()
    e2tts.vocos.to(device)
    
    #dataset = HFDataset(load_dataset("parquet", data_files={"test": "/ckptstorage/zhanghaomin/tts/GLOBE/data/test-*.parquet"})["test"])
    #sample = dataset[1]
    #mel_spec_raw = sample["mel_spec"].unsqueeze(0)
    #mel_spec = rearrange(mel_spec_raw, 'b d n -> b n d')
    #print(mel_spec.shape, sample["text"])

    #out_dir = "/user-fs/zhanghaomin/v2a_generated/v2a_190000_tests/"
    #out_dir = "/user-fs/zhanghaomin/v2a_generated/tv2a_98500_clips/"
    #if not os.path.exists(out_dir):
    #    os.makedirs(out_dir)

    #bs = list(range(10)) + [14,16]
    #bs = None
    
    #SCORE_THRESHOLD_TRAIN = '{"/zhanghaomin/datas/audiocaps": -9999.0, "/radiostorage/WavCaps": -9999.0, "/radiostorage/AudioGroup": 9999.0, "/ckptstorage/zhanghaomin/audioset": -9999.0, "/ckptstorage/zhanghaomin/BBCSoundEffects": 9999.0, "/ckptstorage/zhanghaomin/CLAP_freesound": 9999.0, "/zhanghaomin/datas/musiccap": -9999.0, "/ckptstorage/zhanghaomin/TangoPromptBank": -9999.0, "audioset": "af-audioset", "/ckptstorage/zhanghaomin/audiosetsl": 9999.0, "/ckptstorage/zhanghaomin/giantsoundeffects": -9999.0}'  # /root/datasets/ /radiostorage/
    #SCORE_THRESHOLD_TRAIN = json.loads(SCORE_THRESHOLD_TRAIN)
    #for key in SCORE_THRESHOLD_TRAIN:
    #    if key == "audioset":
    #        continue
    #    if SCORE_THRESHOLD_TRAIN[key] <= -9000.0:
    #        SCORE_THRESHOLD_TRAIN[key] = -np.inf
    #print("SCORE_THRESHOLD_TRAIN", SCORE_THRESHOLD_TRAIN)
    stft = EncodecWrapper("facebook/encodec_24khz")
    ####eval_dataset = Text2AudioDataset(None, "val_instruments", None, None, None, -1, -1, stft, 0, True, SCORE_THRESHOLD_TRAIN, "/zhanghaomin/codes2/audiocaption/msclapcap_v1.list", -1.0, 1, 1, [drop_prompt], None, 0, vgg_test=[test_scp, start, end, step], video_encoder="clip_vit")
    ####eval_dataset = Text2AudioDataset(None, "val_vggsound", None, None, None, -1, -1, stft, 0, True, SCORE_THRESHOLD_TRAIN, "/zhanghaomin/codes2/audiocaption/msclapcap_v1.list", -1.0, 1, 1, [drop_prompt], None, 0, vgg_test=[test_scp, start, end, step], video_encoder="clip_vit")
    ####eval_dataloader = DataLoader(eval_dataset, shuffle=False, batch_size=1, collate_fn=eval_dataset.collate_fn, num_workers=1, drop_last=False, pin_memory=True)
    return e2tts, stft


e2tts, stft = load(device)
gc.collect()


def run(e2tts, stft, arg1, arg2, arg3, arg4, piano):
    try:
        fbanks = []
        fbank_lens = []
        video_paths = []
        text_selected = []
        for audio, txt in [[arg1, arg2]]:
            waveform = read_audio_from_video(audio)
            if waveform is None:
                continue
            # length = self.val_length
            # waveform = waveform[:, :length*torch_tools.hop_size]
            fbank = stft(waveform).transpose(-1, -2)
            fbanks.append(fbank)
            fbank_lens.append(fbank.shape[1])
            video_paths.append(audio)
            text_selected.append(txt)
            # print("stft", waveform.shape, fbank.shape)
        # max_length = max(fbank_lens)
        # for i in range(len(fbanks)):
        #    if fbanks[i].shape[1] < max_length:
        #        fbanks[i] = torch.cat([fbanks[i], torch.zeros(fbanks[i].shape[0], max_length-fbanks[i].shape[1], fbanks[i].shape[2])], 1)
        mel = torch.cat(fbanks, 0)
        mel_len = torch.Tensor(fbank_lens).to(torch.int32)
        
        frames, midis = E2TTS.encode_video_frames(video_paths, mel.shape[1], piano)
    
        batches = [[text_selected, mel, video_paths, mel_len, [arg3], None, frames, midis]]
        
        i = 0
        for b, batch in enumerate(batches):
            #if (bs is not None) and (b not in bs):
            #    continue
            #text, mel_spec, _, mel_lengths = batch
            text, mel_spec, video_paths, mel_lengths, video_drop_prompt, audio_drop_prompt, frames, midis = batch
            print(mel_spec.shape, mel_lengths, text, video_paths, video_drop_prompt, audio_drop_prompt, frames.shape if frames is not None and not isinstance(frames, float) else frames, midis.shape if midis is not None else midis, midis.sum() if midis is not None else midis)
            text = text[i:i+1]
            mel_spec = mel_spec[i:i+1, 0:mel_lengths[i], :]
            mel_lengths = mel_lengths[i:i+1]
            video_paths = video_paths[i:i+1]
            #video_path = out_dir + video_paths[0].replace("/", "__")
            #audio_path = video_path.replace(".mp4", ".wav")
            video_path = video_paths[0]
            audio_path = video_path + ".wav"
            
            name = video_paths[0].rsplit("/", 1)[1].rsplit(".", 1)[0]
            
            num = 1
            
            l = mel_lengths[0]
            #cond = mel_spec.repeat(num, 1, 1)
            cond = torch.randn(num, l, e2tts.num_channels)
            duration = torch.tensor([l]*num, dtype=torch.int32)
            lens = torch.tensor([l]*num, dtype=torch.int32)
            print(datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3], "start")
            #e2tts.sample(text=[""]*num, duration=duration.to("cuda"), lens=lens.to("cuda"), cond=cond.to("cuda"), save_to_filename="test.wav", steps=16, cfg_strength=3.0, remove_parallel_component=False, sway_sampling=True)
            outputs = e2tts.sample(text=None, duration=duration.to(e2tts.device), lens=lens.to(e2tts.device),
                        cond=cond.to(e2tts.device), save_to_filename=audio_path, steps=arg4, prompt=text*num,
                        video_drop_prompt=video_drop_prompt, audio_drop_prompt=audio_drop_prompt, cfg_strength=2.0,
                        remove_parallel_component=False, sway_sampling=True, video_paths=video_paths, return_raw_output=True,
                        frames=(frames if frames is None or isinstance(frames, float) else frames.to(e2tts.device)), midis=(midis if midis is None else midis.to(e2tts.device)))
            print(datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3], "sample")
            #one_audio = e2tts.vocos.decode(mel_spec_raw.to("cuda"))
            #one_audio = e2tts.vocos.decode(cond.transpose(-1,-2).to("cuda"))
            #print(datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3], "vocoder")
            #torchaudio.save("ref.wav", one_audio.detach().cpu(), sample_rate = e2tts.sampling_rate)
            
            outputs = outputs.reshape(1, -1, outputs.shape[-1])
            audio_final = e2tts.vocos.decode(outputs.transpose(-1,-2))
            audio_final = audio_final.detach().cpu()
            
            torchaudio.save(audio_path, audio_final, sample_rate = e2tts.sampling_rate)
            
            #os.system("cp \"" + video_paths[0] + "\" \"" + video_path + "\"")
            video = VideoFileClip(video_path)
            audio = AudioFileClip(audio_path)
            print("duration", video.duration, audio.duration)
            if video.duration >= audio.duration:
                video = video.subclip(0, audio.duration)
            else:
                audio = audio.subclip(0, video.duration)
            final_video = video.set_audio(audio)
            #video_path_gen = video_path.replace(".mp4", ".v2a.mp4")
            video_path_gen = video_path + ".mp4"
            final_video.write_videofile(video_path_gen, codec="libx264", audio_codec="aac")
            
            print("paths", video_path, audio_path, video_path_gen)
            return video_path_gen
    except Exception as e:
        print("Exception", e)
        traceback.print_exc()
        
        if False:
            if not os.path.exists(out_dir+"groundtruth/"):
                os.makedirs(out_dir+"groundtruth/")
            if not os.path.exists(out_dir+"generated/"):
                os.makedirs(out_dir+"generated/")
            duration_gt = video.duration
            duration_gr = final_video.duration
            duration = min(duration_gt, duration_gr)
            audio_gt = video.audio.subclip(0, duration)
            audio_gr = final_video.audio.subclip(0, duration)
            audio_gt.write_audiofile(out_dir+"groundtruth/"+name+".wav", fps=24000)
            audio_gr.write_audiofile(out_dir+"generated/"+name+".wav", fps=24000)



#@spaces.GPU(duration=120)
def video_to_audio(video: gr.Video, prompt: str, num_steps: int):
    
    video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
    
    if video.startswith("http"):
        data = requests.get(video, timeout=60).content
        with open(video_path, "wb") as fw:
            fw.write(data)
    else:
        shutil.copy(video, video_path)
    
    video_save_path = run(e2tts, stft, video_path, prompt, len(prompt)==0, num_steps, False)
    gc.collect()
    
    return video_save_path


def video_to_piano(video: gr.Video, prompt: str, num_steps: int):
    
    video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
    
    if video.startswith("http"):
        data = requests.get(video, timeout=60).content
        with open(video_path, "wb") as fw:
            fw.write(data)
    else:
        shutil.copy(video, video_path)
    
    video_save_path = run(e2tts, stft, video_path, prompt, len(prompt)==0, num_steps, True)
    gc.collect()
    
    return video_save_path


video_to_audio_tab = gr.Interface(
    fn=video_to_audio,
    description="""

    Paper: <a href="https://arxiv.org/abs/2503.22200">https://arxiv.org/abs/2503.22200</a><br>

    Code: <a href="https://github.com/acappemin/Video-to-Audio-and-Piano">https://github.com/acappemin/Video-to-Audio-and-Piano</a><br>

    Project page: <a href="https://acappemin.github.io/Video-to-Audio-and-Piano.github.io">https://acappemin.github.io/Video-to-Audio-and-Piano.github.io</a><br>

    Models: <a href="https://huggingface.co/lshzhm/Video-to-Audio-and-Piano/tree/main">https://huggingface.co/lshzhm/Video-to-Audio-and-Piano/tree/main</a><br>

    """,
    inputs=[
        gr.Video(label="Input Video"),
        gr.Text(label='Video-to-Audio Text Prompt'),
        gr.Number(label='Video-to-Audio Num Steps', value=25, precision=0, minimum=1),
    ],
    outputs=[
        gr.Video(label="Video-to-Audio Output"),
    ],
    cache_examples=False,
    title='Video-to-Audio',
    examples=[
        [
            './tests/VGGSound/video/1u1orBeV4xI_000428.mp4',
            'the sound of ripping paper',
            25,
        ],
        [
            './tests/VGGSound/video/1uCzQCdCC1U_000170.mp4',
            'the sound of race car, auto racing',
            25,
        ],
    ])


video_to_piano_tab = gr.Interface(
    fn=video_to_piano,
    description="""

    Paper: <a href="https://arxiv.org/abs/2503.22200">https://arxiv.org/abs/2503.22200</a><br>

    Code: <a href="https://github.com/acappemin/Video-to-Audio-and-Piano">https://github.com/acappemin/Video-to-Audio-and-Piano</a><br>

    Project page: <a href="https://acappemin.github.io/Video-to-Audio-and-Piano.github.io">https://acappemin.github.io/Video-to-Audio-and-Piano.github.io</a><br>

    Models: <a href="https://huggingface.co/lshzhm/Video-to-Audio-and-Piano/tree/main">https://huggingface.co/lshzhm/Video-to-Audio-and-Piano/tree/main</a><br>

    """,
    inputs=[
        gr.Video(label="Input Video"),
        gr.Text(label='Video-to-Audio Text Prompt'),
        gr.Number(label='Video-to-Audio Num Steps', value=25, precision=0, minimum=1),
    ],
    outputs=[
        gr.Video(label="Video-to-Piano Output"),
    ],
    cache_examples=False,
    title='Video-to-Piano',
    examples=[
        [
            './tests/piano_2h_cropped2_cuts/nwwHuxHMIpc.00000001.mp4',
            'the sound of playing piano',
            25,
        ],
        [
            './tests/piano_2h_cropped2_cuts/u5nBBJndN3I.00000004.mp4',
            'the sound of playing piano',
            25,
        ],
    ])


if __name__ == "__main__":
    gr.TabbedInterface([video_to_audio_tab, video_to_piano_tab], ['Video-to-Audio', 'Video-to-Piano']).queue(max_size=1).launch()