File size: 14,184 Bytes
468e203 5883076 468e203 5883076 468e203 5883076 468e203 5883076 468e203 5883076 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import gradio as gr
import pandas as pd
from datasets import load_dataset
import random
from typing import Dict, Any, List
import json
# Load the dataset
def load_community_alignment_dataset():
"""Load the Facebook Community Alignment Dataset"""
try:
dataset = load_dataset("facebook/community-alignment-dataset")
print(f"Dataset loaded successfully. Available splits: {list(dataset.keys())}")
for split_name, split_data in dataset.items():
print(f"Split '{split_name}': {len(split_data)} items")
return dataset
except Exception as e:
print(f"Error loading dataset: {e}")
return None
# Initialize dataset
dataset = load_community_alignment_dataset()
def format_conversation_turn(turn_data: Dict[str, Any], turn_number: int) -> str:
"""Format a conversation turn for display"""
if not turn_data:
return ""
prompt = turn_data.get('prompt', '')
responses = turn_data.get('responses', '')
preferred = turn_data.get('preferred_response', '')
formatted = f"**Turn {turn_number}**\n\n"
formatted += f"**Prompt:** {prompt}\n\n"
if responses:
formatted += "**Responses:**\n"
formatted += responses.replace('# Response ', '**Response ').replace(':\n', ':**\n')
formatted += "\n"
if preferred:
formatted += f"**Preferred Response:** {preferred.upper()}\n"
return formatted
def get_conversation_data(conversation_id: int) -> Dict[str, Any]:
"""Get conversation data by ID"""
if not dataset:
return None
try:
# Search for conversation in the dataset
for split in dataset.keys():
split_data = dataset[split]
for i in range(len(split_data)):
item = split_data[i]
if item.get('conversation_id') == conversation_id:
return item
return None
except Exception as e:
print(f"Error getting conversation data: {e}")
return None
def format_annotator_info(item: Dict[str, Any]) -> str:
"""Format annotator information"""
info = "**Annotator Information:**\n\n"
demographics = [
('Age', 'annotator_age'),
('Gender', 'annotator_gender'),
('Education', 'annotator_education_level'),
('Political', 'annotator_political'),
('Ethnicity', 'annotator_ethnicity'),
('Country', 'annotator_country')
]
for label, key in demographics:
value = item.get(key, 'N/A')
if value and value != 'None':
info += f"**{label}:** {value}\n"
return info
def display_conversation(conversation_id: int) -> tuple:
"""Display a conversation by ID"""
if not dataset:
return "Dataset not loaded", "", "", ""
item = get_conversation_data(conversation_id)
if not item:
return f"Conversation ID {conversation_id} not found", "", "", ""
# Format conversation turns
conversation_text = ""
# First turn
if item.get('first_turn_prompt'):
first_turn = {
'prompt': item['first_turn_prompt'],
'responses': item['first_turn_responses'],
'preferred_response': item['first_turn_preferred_response']
}
conversation_text += format_conversation_turn(first_turn, 1) + "\n"
# Second turn
if item.get('second_turn_prompt'):
second_turn = {
'prompt': item['second_turn_prompt'],
'responses': item['second_turn_responses'],
'preferred_response': item['second_turn_preferred_response']
}
conversation_text += format_conversation_turn(second_turn, 2) + "\n"
# Third turn
if item.get('third_turn_prompt'):
third_turn = {
'prompt': item['third_turn_prompt'],
'responses': item['third_turn_responses'],
'preferred_response': item['third_turn_preferred_response']
}
conversation_text += format_conversation_turn(third_turn, 3) + "\n"
# Fourth turn
if item.get('fourth_turn_prompt'):
fourth_turn = {
'prompt': item['fourth_turn_prompt'],
'responses': item['fourth_turn_responses'],
'preferred_response': item['fourth_turn_preferred_response']
}
conversation_text += format_conversation_turn(fourth_turn, 4) + "\n"
# Annotator information
annotator_info = format_annotator_info(item)
# Metadata
metadata = f"**Metadata:**\n\n"
metadata += f"**Conversation ID:** {item.get('conversation_id', 'N/A')}\n"
metadata += f"**Language:** {item.get('assigned_lang', 'N/A')}\n"
metadata += f"**Annotator ID:** {item.get('annotator_id', 'N/A')}\n"
metadata += f"**In Balanced Subset:** {item.get('in_balanced_subset', 'N/A')}\n"
metadata += f"**In Balanced Subset 10:** {item.get('in_balanced_subset_10', 'N/A')}\n"
metadata += f"**Is Pregenerated First Prompt:** {item.get('is_pregenerated_first_prompt', 'N/A')}\n"
# Raw JSON for debugging
raw_json = json.dumps(item, indent=2)
return conversation_text, annotator_info, metadata, raw_json
def get_random_conversation() -> int:
"""Get a random conversation ID"""
if not dataset:
return 0
try:
# Get a random split
split = random.choice(list(dataset.keys()))
split_data = dataset[split]
# Get a random index
random_index = random.randint(0, len(split_data) - 1)
item = split_data[random_index]
return item.get('conversation_id', 0)
except Exception as e:
print(f"Error getting random conversation: {e}")
# Fallback: return a default conversation ID
return 1061830552573006 # The ID from your example
def get_dataset_stats() -> str:
"""Get dataset statistics"""
if not dataset:
return "Dataset not loaded"
stats = "**Dataset Statistics:**\n\n"
for split_name, split_data in dataset.items():
stats += f"**{split_name}:** {len(split_data)} conversations\n"
# Sample some metadata
if 'train' in dataset and len(dataset['train']) > 0:
sample_item = dataset['train'][0]
stats += f"\n**Sample Fields:**\n"
for key in list(sample_item.keys())[:10]: # Show first 10 fields
stats += f"- {key}\n"
return stats
def search_conversations(query: str, field: str) -> str:
"""Search conversations by field"""
if not dataset or not query:
return "Please provide a search query"
results = []
query_lower = query.lower()
try:
for split_name, split_data in dataset.items():
# Limit search to first 100 items per split
for i in range(min(100, len(split_data))):
item = split_data[i]
if field in item and item[field]:
field_value = str(item[field]).lower()
if query_lower in field_value:
results.append({
'conversation_id': item.get('conversation_id'),
'split': split_name,
'field_value': str(item[field])[:100] + "..." if len(str(item[field])) > 100 else str(item[field])
})
except Exception as e:
return f"Error during search: {e}"
if not results:
return f"No results found for '{query}' in field '{field}'"
result_text = f"**Search Results for '{query}' in '{field}':**\n\n"
for i, result in enumerate(results[:10]): # Limit to 10 results
result_text += f"{i+1}. **Conversation ID:** {result['conversation_id']} (Split: {result['split']})\n"
result_text += f" **Value:** {result['field_value']}\n\n"
return result_text
# Create the Gradio interface
def create_interface():
with gr.Blocks(title="Facebook Community Alignment Dataset Viewer", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π€ Facebook Community Alignment Dataset Viewer")
gr.Markdown("Explore conversations, responses, and annotations from the Facebook Community Alignment Dataset.")
with gr.Tabs():
# Tab 1: Conversation Viewer
with gr.Tab("Conversation Viewer"):
with gr.Row():
with gr.Column(scale=1):
conversation_id_input = gr.Number(
label="Conversation ID",
value=get_random_conversation(),
interactive=True
)
random_btn = gr.Button("π² Random Conversation", variant="secondary")
load_btn = gr.Button("π Load Conversation", variant="primary")
with gr.Column(scale=3):
conversation_display = gr.Markdown(label="Conversation")
annotator_display = gr.Markdown(label="Annotator Information")
metadata_display = gr.Markdown(label="Metadata")
raw_json_display = gr.Code(label="Raw JSON", language="json")
# Connect buttons
random_btn.click(
fn=get_random_conversation,
outputs=conversation_id_input
)
load_btn.click(
fn=display_conversation,
inputs=conversation_id_input,
outputs=[conversation_display, annotator_display, metadata_display, raw_json_display]
)
conversation_id_input.submit(
fn=display_conversation,
inputs=conversation_id_input,
outputs=[conversation_display, annotator_display, metadata_display, raw_json_display]
)
# Tab 2: Dataset Statistics
with gr.Tab("Dataset Statistics"):
stats_btn = gr.Button("π Load Statistics", variant="primary")
stats_display = gr.Markdown(label="Dataset Statistics")
stats_btn.click(
fn=get_dataset_stats,
outputs=stats_display
)
# Tab 3: Search
with gr.Tab("Search Conversations"):
with gr.Row():
with gr.Column(scale=1):
search_query = gr.Textbox(
label="Search Query",
placeholder="Enter search term...",
interactive=True
)
search_field = gr.Dropdown(
label="Search Field",
choices=[
"first_turn_prompt",
"second_turn_prompt",
"third_turn_prompt",
"annotator_country",
"annotator_age",
"annotator_gender",
"assigned_lang"
],
value="first_turn_prompt",
interactive=True
)
search_btn = gr.Button("π Search", variant="primary")
with gr.Column(scale=2):
search_results = gr.Markdown(label="Search Results")
search_btn.click(
fn=search_conversations,
inputs=[search_query, search_field],
outputs=search_results
)
search_query.submit(
fn=search_conversations,
inputs=[search_query, search_field],
outputs=search_results
)
# Tab 4: About
with gr.Tab("About"):
gr.Markdown("""
## About the Facebook Community Alignment Dataset
This dataset contains conversations with multiple response options and human annotations indicating which responses are preferred by different demographic groups.
### Dataset Structure:
- **Conversations**: Multi-turn dialogues with prompts and multiple response options
- **Annotations**: Human preferences for different response options
- **Demographics**: Annotator information including age, gender, education, political views, ethnicity, and country
### Key Features:
- Multi-turn conversations (up to 4 turns)
- 4 response options per turn (A, B, C, D)
- Human preference annotations
- Diverse annotator demographics
- Balanced subsets for analysis
### Use Cases:
- Studying response preferences across demographics
- Training models to generate community-aligned responses
- Analyzing conversation dynamics
- Understanding cultural and demographic differences in communication preferences
### Citation:
If you use this dataset, please cite the original Facebook research paper.
""")
# Auto-load a random conversation on startup
demo.load(
fn=display_conversation,
inputs=conversation_id_input,
outputs=[conversation_display, annotator_display, metadata_display, raw_json_display]
)
return demo
# Create and launch the app
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |