File size: 14,184 Bytes
468e203
 
 
 
 
 
 
 
 
 
 
 
5883076
 
 
468e203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5883076
 
 
 
 
 
 
 
 
 
 
 
468e203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5883076
 
 
 
 
 
 
 
 
 
 
 
 
 
468e203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5883076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468e203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5883076
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import gradio as gr
import pandas as pd
from datasets import load_dataset
import random
from typing import Dict, Any, List
import json

# Load the dataset
def load_community_alignment_dataset():
    """Load the Facebook Community Alignment Dataset"""
    try:
        dataset = load_dataset("facebook/community-alignment-dataset")
        print(f"Dataset loaded successfully. Available splits: {list(dataset.keys())}")
        for split_name, split_data in dataset.items():
            print(f"Split '{split_name}': {len(split_data)} items")
        return dataset
    except Exception as e:
        print(f"Error loading dataset: {e}")
        return None

# Initialize dataset
dataset = load_community_alignment_dataset()

def format_conversation_turn(turn_data: Dict[str, Any], turn_number: int) -> str:
    """Format a conversation turn for display"""
    if not turn_data:
        return ""
    
    prompt = turn_data.get('prompt', '')
    responses = turn_data.get('responses', '')
    preferred = turn_data.get('preferred_response', '')
    
    formatted = f"**Turn {turn_number}**\n\n"
    formatted += f"**Prompt:** {prompt}\n\n"
    
    if responses:
        formatted += "**Responses:**\n"
        formatted += responses.replace('# Response ', '**Response ').replace(':\n', ':**\n')
        formatted += "\n"
    
    if preferred:
        formatted += f"**Preferred Response:** {preferred.upper()}\n"
    
    return formatted

def get_conversation_data(conversation_id: int) -> Dict[str, Any]:
    """Get conversation data by ID"""
    if not dataset:
        return None
    
    try:
        # Search for conversation in the dataset
        for split in dataset.keys():
            split_data = dataset[split]
            for i in range(len(split_data)):
                item = split_data[i]
                if item.get('conversation_id') == conversation_id:
                    return item
        return None
    except Exception as e:
        print(f"Error getting conversation data: {e}")
        return None

def format_annotator_info(item: Dict[str, Any]) -> str:
    """Format annotator information"""
    info = "**Annotator Information:**\n\n"
    
    demographics = [
        ('Age', 'annotator_age'),
        ('Gender', 'annotator_gender'),
        ('Education', 'annotator_education_level'),
        ('Political', 'annotator_political'),
        ('Ethnicity', 'annotator_ethnicity'),
        ('Country', 'annotator_country')
    ]
    
    for label, key in demographics:
        value = item.get(key, 'N/A')
        if value and value != 'None':
            info += f"**{label}:** {value}\n"
    
    return info

def display_conversation(conversation_id: int) -> tuple:
    """Display a conversation by ID"""
    if not dataset:
        return "Dataset not loaded", "", "", ""
    
    item = get_conversation_data(conversation_id)
    if not item:
        return f"Conversation ID {conversation_id} not found", "", "", ""
    
    # Format conversation turns
    conversation_text = ""
    
    # First turn
    if item.get('first_turn_prompt'):
        first_turn = {
            'prompt': item['first_turn_prompt'],
            'responses': item['first_turn_responses'],
            'preferred_response': item['first_turn_preferred_response']
        }
        conversation_text += format_conversation_turn(first_turn, 1) + "\n"
    
    # Second turn
    if item.get('second_turn_prompt'):
        second_turn = {
            'prompt': item['second_turn_prompt'],
            'responses': item['second_turn_responses'],
            'preferred_response': item['second_turn_preferred_response']
        }
        conversation_text += format_conversation_turn(second_turn, 2) + "\n"
    
    # Third turn
    if item.get('third_turn_prompt'):
        third_turn = {
            'prompt': item['third_turn_prompt'],
            'responses': item['third_turn_responses'],
            'preferred_response': item['third_turn_preferred_response']
        }
        conversation_text += format_conversation_turn(third_turn, 3) + "\n"
    
    # Fourth turn
    if item.get('fourth_turn_prompt'):
        fourth_turn = {
            'prompt': item['fourth_turn_prompt'],
            'responses': item['fourth_turn_responses'],
            'preferred_response': item['fourth_turn_preferred_response']
        }
        conversation_text += format_conversation_turn(fourth_turn, 4) + "\n"
    
    # Annotator information
    annotator_info = format_annotator_info(item)
    
    # Metadata
    metadata = f"**Metadata:**\n\n"
    metadata += f"**Conversation ID:** {item.get('conversation_id', 'N/A')}\n"
    metadata += f"**Language:** {item.get('assigned_lang', 'N/A')}\n"
    metadata += f"**Annotator ID:** {item.get('annotator_id', 'N/A')}\n"
    metadata += f"**In Balanced Subset:** {item.get('in_balanced_subset', 'N/A')}\n"
    metadata += f"**In Balanced Subset 10:** {item.get('in_balanced_subset_10', 'N/A')}\n"
    metadata += f"**Is Pregenerated First Prompt:** {item.get('is_pregenerated_first_prompt', 'N/A')}\n"
    
    # Raw JSON for debugging
    raw_json = json.dumps(item, indent=2)
    
    return conversation_text, annotator_info, metadata, raw_json

def get_random_conversation() -> int:
    """Get a random conversation ID"""
    if not dataset:
        return 0
    
    try:
        # Get a random split
        split = random.choice(list(dataset.keys()))
        split_data = dataset[split]
        
        # Get a random index
        random_index = random.randint(0, len(split_data) - 1)
        item = split_data[random_index]
        
        return item.get('conversation_id', 0)
    except Exception as e:
        print(f"Error getting random conversation: {e}")
        # Fallback: return a default conversation ID
        return 1061830552573006  # The ID from your example

def get_dataset_stats() -> str:
    """Get dataset statistics"""
    if not dataset:
        return "Dataset not loaded"
    
    stats = "**Dataset Statistics:**\n\n"
    
    for split_name, split_data in dataset.items():
        stats += f"**{split_name}:** {len(split_data)} conversations\n"
    
    # Sample some metadata
    if 'train' in dataset and len(dataset['train']) > 0:
        sample_item = dataset['train'][0]
        stats += f"\n**Sample Fields:**\n"
        for key in list(sample_item.keys())[:10]:  # Show first 10 fields
            stats += f"- {key}\n"
    
    return stats

def search_conversations(query: str, field: str) -> str:
    """Search conversations by field"""
    if not dataset or not query:
        return "Please provide a search query"
    
    results = []
    query_lower = query.lower()
    
    try:
        for split_name, split_data in dataset.items():
            # Limit search to first 100 items per split
            for i in range(min(100, len(split_data))):
                item = split_data[i]
                if field in item and item[field]:
                    field_value = str(item[field]).lower()
                    if query_lower in field_value:
                        results.append({
                            'conversation_id': item.get('conversation_id'),
                            'split': split_name,
                            'field_value': str(item[field])[:100] + "..." if len(str(item[field])) > 100 else str(item[field])
                        })
    except Exception as e:
        return f"Error during search: {e}"
    
    if not results:
        return f"No results found for '{query}' in field '{field}'"
    
    result_text = f"**Search Results for '{query}' in '{field}':**\n\n"
    for i, result in enumerate(results[:10]):  # Limit to 10 results
        result_text += f"{i+1}. **Conversation ID:** {result['conversation_id']} (Split: {result['split']})\n"
        result_text += f"   **Value:** {result['field_value']}\n\n"
    
    return result_text

# Create the Gradio interface
def create_interface():
    with gr.Blocks(title="Facebook Community Alignment Dataset Viewer", theme=gr.themes.Soft()) as demo:
        gr.Markdown("# πŸ€– Facebook Community Alignment Dataset Viewer")
        gr.Markdown("Explore conversations, responses, and annotations from the Facebook Community Alignment Dataset.")
        
        with gr.Tabs():
            # Tab 1: Conversation Viewer
            with gr.Tab("Conversation Viewer"):
                with gr.Row():
                    with gr.Column(scale=1):
                        conversation_id_input = gr.Number(
                            label="Conversation ID",
                            value=get_random_conversation(),
                            interactive=True
                        )
                        random_btn = gr.Button("🎲 Random Conversation", variant="secondary")
                        load_btn = gr.Button("πŸ” Load Conversation", variant="primary")
                    
                    with gr.Column(scale=3):
                        conversation_display = gr.Markdown(label="Conversation")
                        annotator_display = gr.Markdown(label="Annotator Information")
                        metadata_display = gr.Markdown(label="Metadata")
                        raw_json_display = gr.Code(label="Raw JSON", language="json")
                
                # Connect buttons
                random_btn.click(
                    fn=get_random_conversation,
                    outputs=conversation_id_input
                )
                
                load_btn.click(
                    fn=display_conversation,
                    inputs=conversation_id_input,
                    outputs=[conversation_display, annotator_display, metadata_display, raw_json_display]
                )
                
                conversation_id_input.submit(
                    fn=display_conversation,
                    inputs=conversation_id_input,
                    outputs=[conversation_display, annotator_display, metadata_display, raw_json_display]
                )
            
            # Tab 2: Dataset Statistics
            with gr.Tab("Dataset Statistics"):
                stats_btn = gr.Button("πŸ“Š Load Statistics", variant="primary")
                stats_display = gr.Markdown(label="Dataset Statistics")
                
                stats_btn.click(
                    fn=get_dataset_stats,
                    outputs=stats_display
                )
            
            # Tab 3: Search
            with gr.Tab("Search Conversations"):
                with gr.Row():
                    with gr.Column(scale=1):
                        search_query = gr.Textbox(
                            label="Search Query",
                            placeholder="Enter search term...",
                            interactive=True
                        )
                        search_field = gr.Dropdown(
                            label="Search Field",
                            choices=[
                                "first_turn_prompt",
                                "second_turn_prompt", 
                                "third_turn_prompt",
                                "annotator_country",
                                "annotator_age",
                                "annotator_gender",
                                "assigned_lang"
                            ],
                            value="first_turn_prompt",
                            interactive=True
                        )
                        search_btn = gr.Button("πŸ” Search", variant="primary")
                    
                    with gr.Column(scale=2):
                        search_results = gr.Markdown(label="Search Results")
                
                search_btn.click(
                    fn=search_conversations,
                    inputs=[search_query, search_field],
                    outputs=search_results
                )
                
                search_query.submit(
                    fn=search_conversations,
                    inputs=[search_query, search_field],
                    outputs=search_results
                )
            
            # Tab 4: About
            with gr.Tab("About"):
                gr.Markdown("""
                ## About the Facebook Community Alignment Dataset
                
                This dataset contains conversations with multiple response options and human annotations indicating which responses are preferred by different demographic groups.
                
                ### Dataset Structure:
                - **Conversations**: Multi-turn dialogues with prompts and multiple response options
                - **Annotations**: Human preferences for different response options
                - **Demographics**: Annotator information including age, gender, education, political views, ethnicity, and country
                
                ### Key Features:
                - Multi-turn conversations (up to 4 turns)
                - 4 response options per turn (A, B, C, D)
                - Human preference annotations
                - Diverse annotator demographics
                - Balanced subsets for analysis
                
                ### Use Cases:
                - Studying response preferences across demographics
                - Training models to generate community-aligned responses
                - Analyzing conversation dynamics
                - Understanding cultural and demographic differences in communication preferences
                
                ### Citation:
                If you use this dataset, please cite the original Facebook research paper.
                """)
        
        # Auto-load a random conversation on startup
        demo.load(
            fn=display_conversation,
            inputs=conversation_id_input,
            outputs=[conversation_display, annotator_display, metadata_display, raw_json_display]
        )
    
    return demo

# Create and launch the app
if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )