Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from datasets import load_dataset
|
4 |
+
import random
|
5 |
+
from typing import Dict, Any, List
|
6 |
+
import json
|
7 |
+
|
8 |
+
# Load the dataset
|
9 |
+
def load_community_alignment_dataset():
|
10 |
+
"""Load the Facebook Community Alignment Dataset"""
|
11 |
+
try:
|
12 |
+
dataset = load_dataset("facebook/community-alignment-dataset")
|
13 |
+
return dataset
|
14 |
+
except Exception as e:
|
15 |
+
print(f"Error loading dataset: {e}")
|
16 |
+
return None
|
17 |
+
|
18 |
+
# Initialize dataset
|
19 |
+
dataset = load_community_alignment_dataset()
|
20 |
+
|
21 |
+
def format_conversation_turn(turn_data: Dict[str, Any], turn_number: int) -> str:
|
22 |
+
"""Format a conversation turn for display"""
|
23 |
+
if not turn_data:
|
24 |
+
return ""
|
25 |
+
|
26 |
+
prompt = turn_data.get('prompt', '')
|
27 |
+
responses = turn_data.get('responses', '')
|
28 |
+
preferred = turn_data.get('preferred_response', '')
|
29 |
+
|
30 |
+
formatted = f"**Turn {turn_number}**\n\n"
|
31 |
+
formatted += f"**Prompt:** {prompt}\n\n"
|
32 |
+
|
33 |
+
if responses:
|
34 |
+
formatted += "**Responses:**\n"
|
35 |
+
formatted += responses.replace('# Response ', '**Response ').replace(':\n', ':**\n')
|
36 |
+
formatted += "\n"
|
37 |
+
|
38 |
+
if preferred:
|
39 |
+
formatted += f"**Preferred Response:** {preferred.upper()}\n"
|
40 |
+
|
41 |
+
return formatted
|
42 |
+
|
43 |
+
def get_conversation_data(conversation_id: int) -> Dict[str, Any]:
|
44 |
+
"""Get conversation data by ID"""
|
45 |
+
if not dataset:
|
46 |
+
return None
|
47 |
+
|
48 |
+
# Search for conversation in the dataset
|
49 |
+
for split in dataset.keys():
|
50 |
+
for item in dataset[split]:
|
51 |
+
if item.get('conversation_id') == conversation_id:
|
52 |
+
return item
|
53 |
+
return None
|
54 |
+
|
55 |
+
def format_annotator_info(item: Dict[str, Any]) -> str:
|
56 |
+
"""Format annotator information"""
|
57 |
+
info = "**Annotator Information:**\n\n"
|
58 |
+
|
59 |
+
demographics = [
|
60 |
+
('Age', 'annotator_age'),
|
61 |
+
('Gender', 'annotator_gender'),
|
62 |
+
('Education', 'annotator_education_level'),
|
63 |
+
('Political', 'annotator_political'),
|
64 |
+
('Ethnicity', 'annotator_ethnicity'),
|
65 |
+
('Country', 'annotator_country')
|
66 |
+
]
|
67 |
+
|
68 |
+
for label, key in demographics:
|
69 |
+
value = item.get(key, 'N/A')
|
70 |
+
if value and value != 'None':
|
71 |
+
info += f"**{label}:** {value}\n"
|
72 |
+
|
73 |
+
return info
|
74 |
+
|
75 |
+
def display_conversation(conversation_id: int) -> tuple:
|
76 |
+
"""Display a conversation by ID"""
|
77 |
+
if not dataset:
|
78 |
+
return "Dataset not loaded", "", "", ""
|
79 |
+
|
80 |
+
item = get_conversation_data(conversation_id)
|
81 |
+
if not item:
|
82 |
+
return f"Conversation ID {conversation_id} not found", "", "", ""
|
83 |
+
|
84 |
+
# Format conversation turns
|
85 |
+
conversation_text = ""
|
86 |
+
|
87 |
+
# First turn
|
88 |
+
if item.get('first_turn_prompt'):
|
89 |
+
first_turn = {
|
90 |
+
'prompt': item['first_turn_prompt'],
|
91 |
+
'responses': item['first_turn_responses'],
|
92 |
+
'preferred_response': item['first_turn_preferred_response']
|
93 |
+
}
|
94 |
+
conversation_text += format_conversation_turn(first_turn, 1) + "\n"
|
95 |
+
|
96 |
+
# Second turn
|
97 |
+
if item.get('second_turn_prompt'):
|
98 |
+
second_turn = {
|
99 |
+
'prompt': item['second_turn_prompt'],
|
100 |
+
'responses': item['second_turn_responses'],
|
101 |
+
'preferred_response': item['second_turn_preferred_response']
|
102 |
+
}
|
103 |
+
conversation_text += format_conversation_turn(second_turn, 2) + "\n"
|
104 |
+
|
105 |
+
# Third turn
|
106 |
+
if item.get('third_turn_prompt'):
|
107 |
+
third_turn = {
|
108 |
+
'prompt': item['third_turn_prompt'],
|
109 |
+
'responses': item['third_turn_responses'],
|
110 |
+
'preferred_response': item['third_turn_preferred_response']
|
111 |
+
}
|
112 |
+
conversation_text += format_conversation_turn(third_turn, 3) + "\n"
|
113 |
+
|
114 |
+
# Fourth turn
|
115 |
+
if item.get('fourth_turn_prompt'):
|
116 |
+
fourth_turn = {
|
117 |
+
'prompt': item['fourth_turn_prompt'],
|
118 |
+
'responses': item['fourth_turn_responses'],
|
119 |
+
'preferred_response': item['fourth_turn_preferred_response']
|
120 |
+
}
|
121 |
+
conversation_text += format_conversation_turn(fourth_turn, 4) + "\n"
|
122 |
+
|
123 |
+
# Annotator information
|
124 |
+
annotator_info = format_annotator_info(item)
|
125 |
+
|
126 |
+
# Metadata
|
127 |
+
metadata = f"**Metadata:**\n\n"
|
128 |
+
metadata += f"**Conversation ID:** {item.get('conversation_id', 'N/A')}\n"
|
129 |
+
metadata += f"**Language:** {item.get('assigned_lang', 'N/A')}\n"
|
130 |
+
metadata += f"**Annotator ID:** {item.get('annotator_id', 'N/A')}\n"
|
131 |
+
metadata += f"**In Balanced Subset:** {item.get('in_balanced_subset', 'N/A')}\n"
|
132 |
+
metadata += f"**In Balanced Subset 10:** {item.get('in_balanced_subset_10', 'N/A')}\n"
|
133 |
+
metadata += f"**Is Pregenerated First Prompt:** {item.get('is_pregenerated_first_prompt', 'N/A')}\n"
|
134 |
+
|
135 |
+
# Raw JSON for debugging
|
136 |
+
raw_json = json.dumps(item, indent=2)
|
137 |
+
|
138 |
+
return conversation_text, annotator_info, metadata, raw_json
|
139 |
+
|
140 |
+
def get_random_conversation() -> int:
|
141 |
+
"""Get a random conversation ID"""
|
142 |
+
if not dataset:
|
143 |
+
return 0
|
144 |
+
|
145 |
+
# Get a random split and item
|
146 |
+
split = random.choice(list(dataset.keys()))
|
147 |
+
item = random.choice(dataset[split])
|
148 |
+
return item.get('conversation_id', 0)
|
149 |
+
|
150 |
+
def get_dataset_stats() -> str:
|
151 |
+
"""Get dataset statistics"""
|
152 |
+
if not dataset:
|
153 |
+
return "Dataset not loaded"
|
154 |
+
|
155 |
+
stats = "**Dataset Statistics:**\n\n"
|
156 |
+
|
157 |
+
for split_name, split_data in dataset.items():
|
158 |
+
stats += f"**{split_name}:** {len(split_data)} conversations\n"
|
159 |
+
|
160 |
+
# Sample some metadata
|
161 |
+
if 'train' in dataset and len(dataset['train']) > 0:
|
162 |
+
sample_item = dataset['train'][0]
|
163 |
+
stats += f"\n**Sample Fields:**\n"
|
164 |
+
for key in list(sample_item.keys())[:10]: # Show first 10 fields
|
165 |
+
stats += f"- {key}\n"
|
166 |
+
|
167 |
+
return stats
|
168 |
+
|
169 |
+
def search_conversations(query: str, field: str) -> str:
|
170 |
+
"""Search conversations by field"""
|
171 |
+
if not dataset or not query:
|
172 |
+
return "Please provide a search query"
|
173 |
+
|
174 |
+
results = []
|
175 |
+
query_lower = query.lower()
|
176 |
+
|
177 |
+
for split_name, split_data in dataset.items():
|
178 |
+
for item in split_data[:100]: # Limit search to first 100 items per split
|
179 |
+
if field in item and item[field]:
|
180 |
+
field_value = str(item[field]).lower()
|
181 |
+
if query_lower in field_value:
|
182 |
+
results.append({
|
183 |
+
'conversation_id': item.get('conversation_id'),
|
184 |
+
'split': split_name,
|
185 |
+
'field_value': str(item[field])[:100] + "..." if len(str(item[field])) > 100 else str(item[field])
|
186 |
+
})
|
187 |
+
|
188 |
+
if not results:
|
189 |
+
return f"No results found for '{query}' in field '{field}'"
|
190 |
+
|
191 |
+
result_text = f"**Search Results for '{query}' in '{field}':**\n\n"
|
192 |
+
for i, result in enumerate(results[:10]): # Limit to 10 results
|
193 |
+
result_text += f"{i+1}. **Conversation ID:** {result['conversation_id']} (Split: {result['split']})\n"
|
194 |
+
result_text += f" **Value:** {result['field_value']}\n\n"
|
195 |
+
|
196 |
+
return result_text
|
197 |
+
|
198 |
+
# Create the Gradio interface
|
199 |
+
def create_interface():
|
200 |
+
with gr.Blocks(title="Facebook Community Alignment Dataset Viewer", theme=gr.themes.Soft()) as demo:
|
201 |
+
gr.Markdown("# π€ Facebook Community Alignment Dataset Viewer")
|
202 |
+
gr.Markdown("Explore conversations, responses, and annotations from the Facebook Community Alignment Dataset.")
|
203 |
+
|
204 |
+
with gr.Tabs():
|
205 |
+
# Tab 1: Conversation Viewer
|
206 |
+
with gr.Tab("Conversation Viewer"):
|
207 |
+
with gr.Row():
|
208 |
+
with gr.Column(scale=1):
|
209 |
+
conversation_id_input = gr.Number(
|
210 |
+
label="Conversation ID",
|
211 |
+
value=get_random_conversation(),
|
212 |
+
interactive=True
|
213 |
+
)
|
214 |
+
random_btn = gr.Button("π² Random Conversation", variant="secondary")
|
215 |
+
load_btn = gr.Button("π Load Conversation", variant="primary")
|
216 |
+
|
217 |
+
with gr.Column(scale=3):
|
218 |
+
conversation_display = gr.Markdown(label="Conversation")
|
219 |
+
annotator_display = gr.Markdown(label="Annotator Information")
|
220 |
+
metadata_display = gr.Markdown(label="Metadata")
|
221 |
+
raw_json_display = gr.Code(label="Raw JSON", language="json")
|
222 |
+
|
223 |
+
# Connect buttons
|
224 |
+
random_btn.click(
|
225 |
+
fn=get_random_conversation,
|
226 |
+
outputs=conversation_id_input
|
227 |
+
)
|
228 |
+
|
229 |
+
load_btn.click(
|
230 |
+
fn=display_conversation,
|
231 |
+
inputs=conversation_id_input,
|
232 |
+
outputs=[conversation_display, annotator_display, metadata_display, raw_json_display]
|
233 |
+
)
|
234 |
+
|
235 |
+
conversation_id_input.submit(
|
236 |
+
fn=display_conversation,
|
237 |
+
inputs=conversation_id_input,
|
238 |
+
outputs=[conversation_display, annotator_display, metadata_display, raw_json_display]
|
239 |
+
)
|
240 |
+
|
241 |
+
# Tab 2: Dataset Statistics
|
242 |
+
with gr.Tab("Dataset Statistics"):
|
243 |
+
stats_btn = gr.Button("π Load Statistics", variant="primary")
|
244 |
+
stats_display = gr.Markdown(label="Dataset Statistics")
|
245 |
+
|
246 |
+
stats_btn.click(
|
247 |
+
fn=get_dataset_stats,
|
248 |
+
outputs=stats_display
|
249 |
+
)
|
250 |
+
|
251 |
+
# Tab 3: Search
|
252 |
+
with gr.Tab("Search Conversations"):
|
253 |
+
with gr.Row():
|
254 |
+
with gr.Column(scale=1):
|
255 |
+
search_query = gr.Textbox(
|
256 |
+
label="Search Query",
|
257 |
+
placeholder="Enter search term...",
|
258 |
+
interactive=True
|
259 |
+
)
|
260 |
+
search_field = gr.Dropdown(
|
261 |
+
label="Search Field",
|
262 |
+
choices=[
|
263 |
+
"first_turn_prompt",
|
264 |
+
"second_turn_prompt",
|
265 |
+
"third_turn_prompt",
|
266 |
+
"annotator_country",
|
267 |
+
"annotator_age",
|
268 |
+
"annotator_gender",
|
269 |
+
"assigned_lang"
|
270 |
+
],
|
271 |
+
value="first_turn_prompt",
|
272 |
+
interactive=True
|
273 |
+
)
|
274 |
+
search_btn = gr.Button("π Search", variant="primary")
|
275 |
+
|
276 |
+
with gr.Column(scale=2):
|
277 |
+
search_results = gr.Markdown(label="Search Results")
|
278 |
+
|
279 |
+
search_btn.click(
|
280 |
+
fn=search_conversations,
|
281 |
+
inputs=[search_query, search_field],
|
282 |
+
outputs=search_results
|
283 |
+
)
|
284 |
+
|
285 |
+
search_query.submit(
|
286 |
+
fn=search_conversations,
|
287 |
+
inputs=[search_query, search_field],
|
288 |
+
outputs=search_results
|
289 |
+
)
|
290 |
+
|
291 |
+
# Tab 4: About
|
292 |
+
with gr.Tab("About"):
|
293 |
+
gr.Markdown("""
|
294 |
+
## About the Facebook Community Alignment Dataset
|
295 |
+
|
296 |
+
This dataset contains conversations with multiple response options and human annotations indicating which responses are preferred by different demographic groups.
|
297 |
+
|
298 |
+
### Dataset Structure:
|
299 |
+
- **Conversations**: Multi-turn dialogues with prompts and multiple response options
|
300 |
+
- **Annotations**: Human preferences for different response options
|
301 |
+
- **Demographics**: Annotator information including age, gender, education, political views, ethnicity, and country
|
302 |
+
|
303 |
+
### Key Features:
|
304 |
+
- Multi-turn conversations (up to 4 turns)
|
305 |
+
- 4 response options per turn (A, B, C, D)
|
306 |
+
- Human preference annotations
|
307 |
+
- Diverse annotator demographics
|
308 |
+
- Balanced subsets for analysis
|
309 |
+
|
310 |
+
### Use Cases:
|
311 |
+
- Studying response preferences across demographics
|
312 |
+
- Training models to generate community-aligned responses
|
313 |
+
- Analyzing conversation dynamics
|
314 |
+
- Understanding cultural and demographic differences in communication preferences
|
315 |
+
|
316 |
+
### Citation:
|
317 |
+
If you use this dataset, please cite the original Facebook research paper.
|
318 |
+
""")
|
319 |
+
|
320 |
+
# Auto-load a random conversation on startup
|
321 |
+
demo.load(
|
322 |
+
fn=display_conversation,
|
323 |
+
inputs=conversation_id_input,
|
324 |
+
outputs=[conversation_display, annotator_display, metadata_display, raw_json_display]
|
325 |
+
)
|
326 |
+
|
327 |
+
return demo
|
328 |
+
|
329 |
+
# Create and launch the app
|
330 |
+
if __name__ == "__main__":
|
331 |
+
demo = create_interface()
|
332 |
+
demo.launch(
|
333 |
+
server_name="0.0.0.0",
|
334 |
+
server_port=7860,
|
335 |
+
share=False,
|
336 |
+
show_error=True
|
337 |
+
)
|