Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
import json | |
import copy | |
from basic_agent import ToolAgent | |
from tools import ( | |
smart_read_file, | |
search_and_extract, | |
search_and_extract_from_wikipedia, | |
aggregate_information, | |
extract_clean_text_from_url, | |
youtube_search_tool, | |
load_youtube_transcript, | |
get_audio_from_youtube, | |
image_query_tool, | |
transcribe_audio, | |
) | |
TOOLS = [ | |
smart_read_file, | |
search_and_extract, | |
search_and_extract_from_wikipedia, | |
aggregate_information, | |
extract_clean_text_from_url, | |
youtube_search_tool, | |
load_youtube_transcript, | |
get_audio_from_youtube, | |
image_query_tool, | |
transcribe_audio, | |
] | |
tool_names = [tool.name if hasattr(tool, "name") else str(tool) for tool in TOOLS] | |
print(json.dumps(tool_names, indent=2)) | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
TOOL_USE_SYS_PROMPT = """ | |
You are a helpful AI assistant operating in a structured reasoning and action loop using the ReAct pattern. | |
Your reasoning loop consists of: | |
- Question: the input task you must solve | |
- Thought: Reflect on the task and decide what to do next. | |
- Action: Choose one of the following actions: | |
- Solve it directly using your own knowledge | |
- Break the problem into smaller steps | |
- Use a tool to get more information | |
- Action Input: Provide input for the selected action | |
- Observation: Record the result of the action and/or aggregate information from previous observations (summarize, count, analyse, ...). | |
(Repeat Thought/Action/Action Input/Observation as needed) | |
Terminate your loop with: | |
- Thought: I now know the final answer | |
- Final Answer: [your best answer to the original question] | |
**General Execution Rules:** | |
- If you can answer using only your trained knowledge, do so directly without using tools. | |
- If the question involves image content, use the `image_query_tool`: | |
- Action: image_query_tool | |
- Action Input: 'image_path': [image_path], 'question': [user's question about the image] | |
**Tool Use Constraints:** | |
- Never use any tool more than **3 consecutive times** without either: | |
- Aggregating the information received so far: you can call the `summarize_search_results` tool and analyze the tool outputs to answer the question. | |
- If you need more information, use a different tool or break the problem down further, but do not return a final answer yet. | |
- Do not exceed **5 total calls** to *search-type tools* per query (such as `search_and_extract`, `search_and_extract_from_wikipedia`, `extract_clean_text_from_url`). | |
- Do not ask the user for additional clarification or input. Work with only what is already provided. | |
**If you are unable to answer:** | |
- If neither your knowledge nor tool outputs yield useful information: | |
- Use the output tools the best you can to answer the question, even if it's not perfect. | |
If not, say: | |
> Final Answer: I could not find any useful information to answer your query. | |
- If the question is unanswerable due to lack of input (e.g., missing attachment) or is fundamentally outside your scope, say: | |
> Final Answer: I don't have the ability to answer this query: [brief reason] | |
Always aim to provide the **best and most complete** answer based on your trained knowledge and the tools available. | |
""" | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the ToolAgent on them, submits all answers, | |
and displays the results. | |
""" | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None, gr.update(interactive=False) | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
files_url = "{}/files/{}" # GET /files/{task_id} | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = ToolAgent( | |
tools=TOOLS, | |
backstory=TOOL_USE_SYS_PROMPT | |
) | |
agent.initialize() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None, gr.update(interactive=False) | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None, gr.update(interactive=False) | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None, gr.update(interactive=False) | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None, gr.update(interactive=False) | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None, gr.update(interactive=False) | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
question_level = item.get("Level") | |
question_file_name = item.get("file_name", None) | |
print("\nquestion level: ", question_level) | |
print("task_id: ", task_id) | |
print("question file_name: ", question_file_name) | |
if question_file_name: | |
file_url = files_url.format(api_url, task_id) | |
print("file_url: ", file_url) | |
file_response = requests.get(file_url, timeout=15) | |
file_response.raise_for_status() | |
print("file_response: ", file_response.content[0:50]) | |
save_path = os.path.join("/tmp", question_file_name) | |
print("save_path: ", save_path) | |
with open(save_path, "wb") as f: | |
f.write(file_response.content) | |
print(f"✅ file saved to: {save_path}") | |
found= False | |
metadata = {} | |
for root, dirs, files in os.walk("/"): | |
if question_file_name in files: | |
file_path = os.path.join(root, question_file_name) | |
print("file found at: ", file_path) | |
metadata = {'image_path': file_path} if '.png' in question_file_name else {'file_path': file_path} | |
found=True | |
if question_file_name and not found: | |
print("FileNotFoundError: try making an api request to .files/ or ./static in the hf.space target (or check it manually first)") | |
break | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
q_data = {'query': question_text, 'metadata': metadata} | |
submitted_answer = agent(q_data) # todo: send more data (files) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log), gr.update(interactive=False) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
log_file_dict = copy.deepcopy(results_log) | |
log_file_dict.append({'result_data': result_data}) | |
with open("results_log.json", "w") as results_session_file: | |
json.dump(log_file_dict, results_session_file) | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df, gr.update(interactive=True) | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df, gr.update(interactive=False) | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df, gr.update(interactive=False) | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df, gr.update(interactive=False) | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df, gr.update(interactive=False) | |
def download_log(): | |
return "results_log.json" | |
# Gradio App | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
download_button = gr.Button("Download Evaluation Log", interactive=False) | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table, download_button] | |
) | |
file_output = gr.File(label="Download Log File", visible=True) | |
download_button.click( | |
fn=download_log, | |
outputs=file_output | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |