File size: 13,106 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
fa57368
2169d6d
17856aa
 
 
1188e65
17856aa
1188e65
 
 
11a9992
17856aa
1188e65
17856aa
11a9992
17856aa
fa57368
346989f
1188e65
8252835
1188e65
 
 
8252835
 
1188e65
8252835
 
f199262
8252835
f199262
 
8252835
10e9b7d
3db6293
e80aab9
17856aa
 
fa57368
17856aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6065a57
1188e65
 
 
17856aa
 
 
1188e65
 
 
17856aa
 
 
 
 
 
4021bf3
fa57368
b90251f
31243f4
17856aa
31243f4
 
fa57368
 
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
26798e9
3c4371f
7e4a06b
31243f4
8ca256d
31243f4
e80aab9
f097f24
b177367
31243f4
17856aa
346989f
17856aa
 
ab89541
66dad6d
31243f4
3c4371f
26798e9
66dad6d
b177367
36ed51a
c1fd3d2
3c4371f
f097f24
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
66dad6d
31243f4
3c4371f
26798e9
31243f4
66dad6d
e80aab9
31243f4
26798e9
66dad6d
3c4371f
 
7d65c66
26798e9
66dad6d
7d65c66
31243f4
26798e9
e80aab9
f097f24
b177367
7d65c66
 
3c4371f
5672afe
66dad6d
31243f4
 
 
5672afe
65578ac
5672afe
bf10b54
5672afe
7fb2f57
8ca256d
 
bf10b54
769a765
 
bf10b54
 
 
 
 
 
 
8ca256d
7fb2f57
65578ac
7fb2f57
 
65578ac
bf10b54
6a90ff1
7fb2f57
bf10b54
65578ac
bf10b54
 
66dad6d
31243f4
 
 
66dad6d
31243f4
65578ac
f64da7d
17856aa
7d65c66
 
66dad6d
31243f4
 
7d65c66
31243f4
 
3c4371f
26798e9
f097f24
31243f4
b177367
7d65c66
3c4371f
31243f4
e80aab9
f097f24
7d65c66
31243f4
66dad6d
e80aab9
7d65c66
e80aab9
 
2169d6d
717c4c8
465aeda
 
2169d6d
465aeda
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
33acbfc
26798e9
66dad6d
e80aab9
3c4371f
66dad6d
e80aab9
 
3c4371f
66dad6d
e80aab9
7d65c66
66dad6d
3c4371f
31243f4
7d65c66
26798e9
66dad6d
3c4371f
 
 
 
26798e9
66dad6d
e80aab9
31243f4
 
 
26798e9
66dad6d
7d65c66
31243f4
 
 
26798e9
e80aab9
 
f097f24
 
 
 
b64aec2
e80aab9
31243f4
b64aec2
7e4a06b
e80aab9
31243f4
a4ba7b0
66dad6d
e80aab9
9088b99
b64aec2
7d65c66
e80aab9
31243f4
 
a4ba7b0
e80aab9
a4ba7b0
fa70e96
a4ba7b0
f097f24
 
 
 
 
 
e80aab9
3c4371f
b64aec2
3c4371f
b64aec2
7d65c66
3c4371f
 
7d65c66
3c4371f
7d65c66
 
b64aec2
7d65c66
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import json
import copy

from basic_agent import ToolAgent
from tools import (
    smart_read_file,
    search_and_extract,
    search_and_extract_from_wikipedia,
    aggregate_information,
    extract_clean_text_from_url,
    youtube_search_tool,
    load_youtube_transcript,
    get_audio_from_youtube,
    image_query_tool,
    transcribe_audio,
)

TOOLS = [
    smart_read_file,
    search_and_extract,
    search_and_extract_from_wikipedia,
    aggregate_information,
    extract_clean_text_from_url,
    youtube_search_tool,
    load_youtube_transcript,
    get_audio_from_youtube,
    image_query_tool,
    transcribe_audio,
]

tool_names = [tool.name if hasattr(tool, "name") else str(tool) for tool in TOOLS]
print(json.dumps(tool_names, indent=2))


DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

TOOL_USE_SYS_PROMPT = """
You are a helpful AI assistant operating in a structured reasoning and action loop using the ReAct pattern.

Your reasoning loop consists of:
  - Question: the input task you must solve
  - Thought: Reflect on the task and decide what to do next.
  - Action: Choose one of the following actions:
      - Solve it directly using your own knowledge
      - Break the problem into smaller steps
      - Use a tool to get more information
  - Action Input: Provide input for the selected action
  - Observation: Record the result of the action and/or aggregate information from previous observations (summarize, count, analyse, ...).
  (Repeat Thought/Action/Action Input/Observation as needed)

Terminate your loop with:
  - Thought: I now know the final answer
  - Final Answer: [your best answer to the original question]

**General Execution Rules:**
- If you can answer using only your trained knowledge, do so directly without using tools.
- If the question involves image content, use the `image_query_tool`:
    - Action: image_query_tool
    - Action Input:  'image_path': [image_path], 'question': [user's question about the image]

**Tool Use Constraints:**
- Never use any tool more than **3 consecutive times** without either:
    - Aggregating the information received so far: you can call the `summarize_search_results` tool and analyze the tool outputs to answer the question.
    - If you need more information, use a different tool or break the problem down further, but do not return a final answer yet.
- Do not exceed **5 total calls** to *search-type tools* per query (such as `search_and_extract`, `search_and_extract_from_wikipedia`, `extract_clean_text_from_url`).
- Do not ask the user for additional clarification or input. Work with only what is already provided.

**If you are unable to answer:**
- If neither your knowledge nor tool outputs yield useful information:
    - Use the output tools the best you can to answer the question, even if it's not perfect.
If not, say:
    > Final Answer: I could not find any useful information to answer your query.
- If the question is unanswerable due to lack of input (e.g., missing attachment) or is fundamentally outside your scope, say:
    > Final Answer: I don't have the ability to answer this query: [brief reason]

Always aim to provide the **best and most complete** answer based on your trained knowledge and the tools available.
"""


def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the ToolAgent on them, submits all answers,
    and displays the results.
    """

    space_id = os.getenv("SPACE_ID")

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None, gr.update(interactive=False)

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    files_url = "{}/files/{}"   # GET /files/{task_id}
    submit_url = f"{api_url}/submit"

    
    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = ToolAgent(
            tools=TOOLS,
            backstory=TOOL_USE_SYS_PROMPT
            )
        agent.initialize()
        
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None, gr.update(interactive=False)
        
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    
    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None, gr.update(interactive=False)
        print(f"Fetched {len(questions_data)} questions.")
        
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None, gr.update(interactive=False)
        
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None, gr.update(interactive=False)
        
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None, gr.update(interactive=False)

    
    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    
    
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        question_level = item.get("Level")
        question_file_name = item.get("file_name", None)
        print("\nquestion level: ", question_level)
        print("task_id: ", task_id)
        print("question file_name: ", question_file_name)

        if question_file_name:
            file_url = files_url.format(api_url, task_id)
            print("file_url: ", file_url)
            file_response = requests.get(file_url, timeout=15)
            file_response.raise_for_status()
            print("file_response: ", file_response.content[0:50])
            save_path = os.path.join("/tmp", question_file_name)
            print("save_path: ",  save_path)
            
            with open(save_path, "wb") as f:
                f.write(file_response.content)
                print(f"✅ file saved to: {save_path}")

        found= False
        metadata = {}
        for root, dirs, files in os.walk("/"):
            if question_file_name in files:
                file_path = os.path.join(root, question_file_name)
                print("file found at: ", file_path)
                metadata = {'image_path': file_path} if '.png' in question_file_name else {'file_path': file_path}
                found=True
                
        if question_file_name and not found:
            print("FileNotFoundError: try making an api request to .files/ or ./static in the hf.space target (or check it manually first)")
            break
        
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
            
        try:
            
            q_data = {'query': question_text, 'metadata': metadata}
            submitted_answer = agent(q_data)   # todo: send more data (files)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
            
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log), gr.update(interactive=False)
        

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    
    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        log_file_dict = copy.deepcopy(results_log)
        log_file_dict.append({'result_data': result_data})
        
        with open("results_log.json", "w") as results_session_file:
                json.dump(log_file_dict, results_session_file)
        
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        
        return final_status, results_df, gr.update(interactive=True)
        
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
            
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
            
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df, gr.update(interactive=False)
        
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df, gr.update(interactive=False)
        
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df, gr.update(interactive=False)
        
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df, gr.update(interactive=False)


def download_log():
    return "results_log.json"

    
# Gradio App
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    
    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")
    
    download_button = gr.Button("Download Evaluation Log", interactive=False)

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table, download_button]
    )
    
    file_output = gr.File(label="Download Log File", visible=True)
    
    download_button.click(
        fn=download_log,
        outputs=file_output
    )


if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)

    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)