Spaces:
Sleeping
Sleeping
File size: 13,106 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f fa57368 2169d6d 17856aa 1188e65 17856aa 1188e65 11a9992 17856aa 1188e65 17856aa 11a9992 17856aa fa57368 346989f 1188e65 8252835 1188e65 8252835 1188e65 8252835 f199262 8252835 f199262 8252835 10e9b7d 3db6293 e80aab9 17856aa fa57368 17856aa 6065a57 1188e65 17856aa 1188e65 17856aa 4021bf3 fa57368 b90251f 31243f4 17856aa 31243f4 fa57368 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 26798e9 3c4371f 7e4a06b 31243f4 8ca256d 31243f4 e80aab9 f097f24 b177367 31243f4 17856aa 346989f 17856aa ab89541 66dad6d 31243f4 3c4371f 26798e9 66dad6d b177367 36ed51a c1fd3d2 3c4371f f097f24 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 66dad6d 31243f4 3c4371f 26798e9 31243f4 66dad6d e80aab9 31243f4 26798e9 66dad6d 3c4371f 7d65c66 26798e9 66dad6d 7d65c66 31243f4 26798e9 e80aab9 f097f24 b177367 7d65c66 3c4371f 5672afe 66dad6d 31243f4 5672afe 65578ac 5672afe bf10b54 5672afe 7fb2f57 8ca256d bf10b54 769a765 bf10b54 8ca256d 7fb2f57 65578ac 7fb2f57 65578ac bf10b54 6a90ff1 7fb2f57 bf10b54 65578ac bf10b54 66dad6d 31243f4 66dad6d 31243f4 65578ac f64da7d 17856aa 7d65c66 66dad6d 31243f4 7d65c66 31243f4 3c4371f 26798e9 f097f24 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 f097f24 7d65c66 31243f4 66dad6d e80aab9 7d65c66 e80aab9 2169d6d 717c4c8 465aeda 2169d6d 465aeda 31243f4 e80aab9 3c4371f e80aab9 31243f4 33acbfc 26798e9 66dad6d e80aab9 3c4371f 66dad6d e80aab9 3c4371f 66dad6d e80aab9 7d65c66 66dad6d 3c4371f 31243f4 7d65c66 26798e9 66dad6d 3c4371f 26798e9 66dad6d e80aab9 31243f4 26798e9 66dad6d 7d65c66 31243f4 26798e9 e80aab9 f097f24 b64aec2 e80aab9 31243f4 b64aec2 7e4a06b e80aab9 31243f4 a4ba7b0 66dad6d e80aab9 9088b99 b64aec2 7d65c66 e80aab9 31243f4 a4ba7b0 e80aab9 a4ba7b0 fa70e96 a4ba7b0 f097f24 e80aab9 3c4371f b64aec2 3c4371f b64aec2 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 b64aec2 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import json
import copy
from basic_agent import ToolAgent
from tools import (
smart_read_file,
search_and_extract,
search_and_extract_from_wikipedia,
aggregate_information,
extract_clean_text_from_url,
youtube_search_tool,
load_youtube_transcript,
get_audio_from_youtube,
image_query_tool,
transcribe_audio,
)
TOOLS = [
smart_read_file,
search_and_extract,
search_and_extract_from_wikipedia,
aggregate_information,
extract_clean_text_from_url,
youtube_search_tool,
load_youtube_transcript,
get_audio_from_youtube,
image_query_tool,
transcribe_audio,
]
tool_names = [tool.name if hasattr(tool, "name") else str(tool) for tool in TOOLS]
print(json.dumps(tool_names, indent=2))
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
TOOL_USE_SYS_PROMPT = """
You are a helpful AI assistant operating in a structured reasoning and action loop using the ReAct pattern.
Your reasoning loop consists of:
- Question: the input task you must solve
- Thought: Reflect on the task and decide what to do next.
- Action: Choose one of the following actions:
- Solve it directly using your own knowledge
- Break the problem into smaller steps
- Use a tool to get more information
- Action Input: Provide input for the selected action
- Observation: Record the result of the action and/or aggregate information from previous observations (summarize, count, analyse, ...).
(Repeat Thought/Action/Action Input/Observation as needed)
Terminate your loop with:
- Thought: I now know the final answer
- Final Answer: [your best answer to the original question]
**General Execution Rules:**
- If you can answer using only your trained knowledge, do so directly without using tools.
- If the question involves image content, use the `image_query_tool`:
- Action: image_query_tool
- Action Input: 'image_path': [image_path], 'question': [user's question about the image]
**Tool Use Constraints:**
- Never use any tool more than **3 consecutive times** without either:
- Aggregating the information received so far: you can call the `summarize_search_results` tool and analyze the tool outputs to answer the question.
- If you need more information, use a different tool or break the problem down further, but do not return a final answer yet.
- Do not exceed **5 total calls** to *search-type tools* per query (such as `search_and_extract`, `search_and_extract_from_wikipedia`, `extract_clean_text_from_url`).
- Do not ask the user for additional clarification or input. Work with only what is already provided.
**If you are unable to answer:**
- If neither your knowledge nor tool outputs yield useful information:
- Use the output tools the best you can to answer the question, even if it's not perfect.
If not, say:
> Final Answer: I could not find any useful information to answer your query.
- If the question is unanswerable due to lack of input (e.g., missing attachment) or is fundamentally outside your scope, say:
> Final Answer: I don't have the ability to answer this query: [brief reason]
Always aim to provide the **best and most complete** answer based on your trained knowledge and the tools available.
"""
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the ToolAgent on them, submits all answers,
and displays the results.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None, gr.update(interactive=False)
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
files_url = "{}/files/{}" # GET /files/{task_id}
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = ToolAgent(
tools=TOOLS,
backstory=TOOL_USE_SYS_PROMPT
)
agent.initialize()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None, gr.update(interactive=False)
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None, gr.update(interactive=False)
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None, gr.update(interactive=False)
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None, gr.update(interactive=False)
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None, gr.update(interactive=False)
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
question_level = item.get("Level")
question_file_name = item.get("file_name", None)
print("\nquestion level: ", question_level)
print("task_id: ", task_id)
print("question file_name: ", question_file_name)
if question_file_name:
file_url = files_url.format(api_url, task_id)
print("file_url: ", file_url)
file_response = requests.get(file_url, timeout=15)
file_response.raise_for_status()
print("file_response: ", file_response.content[0:50])
save_path = os.path.join("/tmp", question_file_name)
print("save_path: ", save_path)
with open(save_path, "wb") as f:
f.write(file_response.content)
print(f"✅ file saved to: {save_path}")
found= False
metadata = {}
for root, dirs, files in os.walk("/"):
if question_file_name in files:
file_path = os.path.join(root, question_file_name)
print("file found at: ", file_path)
metadata = {'image_path': file_path} if '.png' in question_file_name else {'file_path': file_path}
found=True
if question_file_name and not found:
print("FileNotFoundError: try making an api request to .files/ or ./static in the hf.space target (or check it manually first)")
break
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
q_data = {'query': question_text, 'metadata': metadata}
submitted_answer = agent(q_data) # todo: send more data (files)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log), gr.update(interactive=False)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
log_file_dict = copy.deepcopy(results_log)
log_file_dict.append({'result_data': result_data})
with open("results_log.json", "w") as results_session_file:
json.dump(log_file_dict, results_session_file)
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df, gr.update(interactive=True)
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df, gr.update(interactive=False)
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df, gr.update(interactive=False)
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df, gr.update(interactive=False)
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df, gr.update(interactive=False)
def download_log():
return "results_log.json"
# Gradio App
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
download_button = gr.Button("Download Evaluation Log", interactive=False)
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table, download_button]
)
file_output = gr.File(label="Download Log File", visible=True)
download_button.click(
fn=download_log,
outputs=file_output
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |