David Pomerenke
Add CommonVoice stats
8beab26
raw
history blame
8.81 kB
import json
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
with open("results.json") as f:
results = json.load(f)
def mean(lst):
return sum(lst) / len(lst)
def create_leaderboard_df(results):
# Sort languages by average BLEU to determine resource categories
langs_with_bleu = [lang for lang in results if lang["bleu"] is not None]
sorted_langs = sorted(langs_with_bleu, key=lambda x: x["bleu"], reverse=True)
n_langs = len(sorted_langs)
high_cutoff = n_langs // 4 # top 25%
low_cutoff = n_langs - n_langs // 4 # bottom 25%
# Create sets of languages for each category
high_resource = {lang["language_name"] for lang in sorted_langs[:high_cutoff]}
low_resource = {lang["language_name"] for lang in sorted_langs[low_cutoff:]}
# Get all model scores with categorization
model_scores = {}
for lang in results:
category = (
"High-Resource"
if lang["language_name"] in high_resource
else "Low-Resource"
if lang["language_name"] in low_resource
else "Mid-Resource"
)
for score in lang["scores"]:
model = score["model"]
if model not in model_scores:
model_scores[model] = {
"High-Resource": [],
"Mid-Resource": [],
"Low-Resource": [],
}
model_scores[model][category].append(score["bleu"])
# Calculate average scores and create DataFrame
leaderboard_data = []
for model, categories in model_scores.items():
# Calculate averages for each category
high_avg = (
round(mean(categories["High-Resource"]), 3)
if categories["High-Resource"]
else 0
)
mid_avg = (
round(mean(categories["Mid-Resource"]), 3)
if categories["Mid-Resource"]
else 0
)
low_avg = (
round(mean(categories["Low-Resource"]), 3)
if categories["Low-Resource"]
else 0
)
# Calculate overall average
all_scores = (
categories["High-Resource"]
+ categories["Mid-Resource"]
+ categories["Low-Resource"]
)
overall_avg = round(sum(all_scores) / len(all_scores), 3)
model_name = model.split("/")[-1]
leaderboard_data.append(
{
"Model": f"[{model_name}](https://openrouter.ai/{model})",
"Overall BLEU": overall_avg,
"High-Resource BLEU": high_avg,
"Mid-Resource BLEU": mid_avg,
"Low-Resource BLEU": low_avg,
"Languages Tested": len(all_scores),
}
)
# Sort by overall BLEU
df = pd.DataFrame(leaderboard_data)
df = df.sort_values("Overall BLEU", ascending=False)
# Add rank and medals
df["Rank"] = range(1, len(df) + 1)
df["Rank"] = df["Rank"].apply(
lambda x: "🥇" if x == 1 else "🥈" if x == 2 else "🥉" if x == 3 else str(x)
)
# Reorder columns
df = df[
[
"Rank",
"Model",
"Overall BLEU",
"High-Resource BLEU",
"Mid-Resource BLEU",
"Low-Resource BLEU",
"Languages Tested",
]
]
return gr.DataFrame(
value=df,
label="Model Leaderboard",
show_search=False,
datatype=[
"number",
"markdown",
"number",
"number",
"number",
"number",
"number",
],
)
def create_model_comparison_plot(results):
# Extract all unique models
models = set()
for lang in results:
for score in lang["scores"]:
models.add(score["model"])
models = list(models)
# Create traces for each model
traces = []
for model in models:
x_vals = [] # languages
y_vals = [] # BLEU scores
for lang in results:
model_score = next(
(s["bleu"] for s in lang["scores"] if s["model"] == model), None
)
if model_score is not None:
x_vals.append(lang["language_name"])
y_vals.append(model_score)
traces.append(
go.Bar(
name=model.split("/")[-1],
x=x_vals,
y=y_vals,
)
)
fig = go.Figure(data=traces)
fig.update_layout(
title="BLEU Scores by Model and Language",
xaxis_title="Language",
yaxis_title="BLEU Score",
barmode="group",
height=500,
)
return fig
def create_language_stats_df(results):
# Create a list to store flattened data
flat_data = []
for lang in results:
# Find the best model and its BLEU score
best_score = max(
lang["scores"] or [{"bleu": None, "model": None}], key=lambda x: x["bleu"]
)
model = best_score['model']
model_name = model.split('/')[-1] if model else "N/A"
model_link = f"<a href='https://openrouter.ai/{model}' style='text-decoration: none; color: inherit;'>{model_name}</a>" if model else "N/A"
row = {
"Language": f"**{lang['language_name']}**",
"Speakers (M)": round(lang["speakers"] / 1_000_000, 1),
"Models Tested": len(lang["scores"]),
"Average BLEU": round(lang["bleu"], 3)
if lang["bleu"] is not None
else "N/A",
"Best Model": model_link,
"Best Model BLEU": round(best_score["bleu"], 3)
if best_score["bleu"] is not None
else "N/A",
"CommonVoice Hours": lang["commonvoice_hours"],
}
flat_data.append(row)
df = pd.DataFrame(flat_data)
return gr.DataFrame(
value=df,
label="Language Results",
show_search="search",
datatype=["markdown", "number", "number", "number", "markdown", "number"],
)
def create_scatter_plot(results):
fig = go.Figure()
x_vals = [lang["speakers"] / 1_000_000 for lang in results] # Convert to millions
y_vals = [lang["bleu"] for lang in results]
labels = [lang["language_name"] for lang in results]
fig.add_trace(
go.Scatter(
x=x_vals,
y=y_vals,
mode="markers+text",
text=labels,
textposition="top center",
hovertemplate="<b>%{text}</b><br>"
+ "Speakers: %{x:.1f}M<br>"
+ "BLEU Score: %{y:.3f}<extra></extra>",
)
)
fig.update_layout(
title="Language Coverage: Speakers vs BLEU Score",
xaxis_title="Number of Speakers (Millions)",
yaxis_title="Average BLEU Score",
height=500,
showlegend=False,
)
# Use log scale for x-axis since speaker numbers vary widely
fig.update_xaxes(type="log")
return fig
# Create the visualization components
with gr.Blocks(title="AI Language Translation Benchmark") as demo:
gr.Markdown("# AI Language Translation Benchmark")
gr.Markdown(
"Comparing translation performance across different AI models and languages"
)
bar_plot = create_model_comparison_plot(results)
scatter_plot = create_scatter_plot(results)
create_leaderboard_df(results)
gr.Plot(value=bar_plot, label="Model Comparison")
create_language_stats_df(results)
gr.Plot(value=scatter_plot, label="Language Coverage")
gr.Markdown(
"""
## Methodology
### Dataset
- Using [FLORES-200](https://huggingface.co/datasets/openlanguagedata/flores_plus) evaluation set, a high-quality human-translated benchmark comprising 200 languages
- Each language is tested with the same 100 sentences
- All translations are from the evaluated language to a fixed set of representative languages sampled by number of speakers
- Language statistics sourced from Ethnologue and Wikidata
### Models & Evaluation
- Models accessed through [OpenRouter](https://openrouter.ai/), including fast models of all big labs, open and closed
- **BLEU Score**: Translations are evaluated using the BLEU metric, which measures how similar the AI's translation is to a human reference translation -- higher is better
### Language Categories
Languages are divided into three tiers based on translation difficulty:
- High-Resource: Top 25% of languages by BLEU score (easiest to translate)
- Mid-Resource: Middle 50% of languages
- Low-Resource: Bottom 25% of languages (hardest to translate)
""",
container=True,
)
demo.launch()