File size: 8,807 Bytes
63202a2 ed78196 63202a2 a65282b df383f6 ed78196 df383f6 ed78196 df383f6 ed78196 df383f6 ed78196 df383f6 ed78196 df383f6 ed78196 df383f6 ed78196 df383f6 ed78196 df383f6 ed78196 63202a2 a65282b 63202a2 a65282b 63202a2 a65282b 63202a2 a65282b 63202a2 a65282b 63202a2 a65282b ed78196 df383f6 ed78196 df383f6 ed78196 df383f6 ed78196 8beab26 ed78196 df383f6 ed78196 d597fe1 a65282b d597fe1 a65282b d597fe1 a65282b d597fe1 a65282b d597fe1 a65282b d597fe1 a65282b 63202a2 a65282b d597fe1 a65282b df383f6 d597fe1 df383f6 d597fe1 63202a2 ed78196 0a5d23d ed78196 0a5d23d a65282b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import json
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
with open("results.json") as f:
results = json.load(f)
def mean(lst):
return sum(lst) / len(lst)
def create_leaderboard_df(results):
# Sort languages by average BLEU to determine resource categories
langs_with_bleu = [lang for lang in results if lang["bleu"] is not None]
sorted_langs = sorted(langs_with_bleu, key=lambda x: x["bleu"], reverse=True)
n_langs = len(sorted_langs)
high_cutoff = n_langs // 4 # top 25%
low_cutoff = n_langs - n_langs // 4 # bottom 25%
# Create sets of languages for each category
high_resource = {lang["language_name"] for lang in sorted_langs[:high_cutoff]}
low_resource = {lang["language_name"] for lang in sorted_langs[low_cutoff:]}
# Get all model scores with categorization
model_scores = {}
for lang in results:
category = (
"High-Resource"
if lang["language_name"] in high_resource
else "Low-Resource"
if lang["language_name"] in low_resource
else "Mid-Resource"
)
for score in lang["scores"]:
model = score["model"]
if model not in model_scores:
model_scores[model] = {
"High-Resource": [],
"Mid-Resource": [],
"Low-Resource": [],
}
model_scores[model][category].append(score["bleu"])
# Calculate average scores and create DataFrame
leaderboard_data = []
for model, categories in model_scores.items():
# Calculate averages for each category
high_avg = (
round(mean(categories["High-Resource"]), 3)
if categories["High-Resource"]
else 0
)
mid_avg = (
round(mean(categories["Mid-Resource"]), 3)
if categories["Mid-Resource"]
else 0
)
low_avg = (
round(mean(categories["Low-Resource"]), 3)
if categories["Low-Resource"]
else 0
)
# Calculate overall average
all_scores = (
categories["High-Resource"]
+ categories["Mid-Resource"]
+ categories["Low-Resource"]
)
overall_avg = round(sum(all_scores) / len(all_scores), 3)
model_name = model.split("/")[-1]
leaderboard_data.append(
{
"Model": f"[{model_name}](https://openrouter.ai/{model})",
"Overall BLEU": overall_avg,
"High-Resource BLEU": high_avg,
"Mid-Resource BLEU": mid_avg,
"Low-Resource BLEU": low_avg,
"Languages Tested": len(all_scores),
}
)
# Sort by overall BLEU
df = pd.DataFrame(leaderboard_data)
df = df.sort_values("Overall BLEU", ascending=False)
# Add rank and medals
df["Rank"] = range(1, len(df) + 1)
df["Rank"] = df["Rank"].apply(
lambda x: "π₯" if x == 1 else "π₯" if x == 2 else "π₯" if x == 3 else str(x)
)
# Reorder columns
df = df[
[
"Rank",
"Model",
"Overall BLEU",
"High-Resource BLEU",
"Mid-Resource BLEU",
"Low-Resource BLEU",
"Languages Tested",
]
]
return gr.DataFrame(
value=df,
label="Model Leaderboard",
show_search=False,
datatype=[
"number",
"markdown",
"number",
"number",
"number",
"number",
"number",
],
)
def create_model_comparison_plot(results):
# Extract all unique models
models = set()
for lang in results:
for score in lang["scores"]:
models.add(score["model"])
models = list(models)
# Create traces for each model
traces = []
for model in models:
x_vals = [] # languages
y_vals = [] # BLEU scores
for lang in results:
model_score = next(
(s["bleu"] for s in lang["scores"] if s["model"] == model), None
)
if model_score is not None:
x_vals.append(lang["language_name"])
y_vals.append(model_score)
traces.append(
go.Bar(
name=model.split("/")[-1],
x=x_vals,
y=y_vals,
)
)
fig = go.Figure(data=traces)
fig.update_layout(
title="BLEU Scores by Model and Language",
xaxis_title="Language",
yaxis_title="BLEU Score",
barmode="group",
height=500,
)
return fig
def create_language_stats_df(results):
# Create a list to store flattened data
flat_data = []
for lang in results:
# Find the best model and its BLEU score
best_score = max(
lang["scores"] or [{"bleu": None, "model": None}], key=lambda x: x["bleu"]
)
model = best_score['model']
model_name = model.split('/')[-1] if model else "N/A"
model_link = f"<a href='https://openrouter.ai/{model}' style='text-decoration: none; color: inherit;'>{model_name}</a>" if model else "N/A"
row = {
"Language": f"**{lang['language_name']}**",
"Speakers (M)": round(lang["speakers"] / 1_000_000, 1),
"Models Tested": len(lang["scores"]),
"Average BLEU": round(lang["bleu"], 3)
if lang["bleu"] is not None
else "N/A",
"Best Model": model_link,
"Best Model BLEU": round(best_score["bleu"], 3)
if best_score["bleu"] is not None
else "N/A",
"CommonVoice Hours": lang["commonvoice_hours"],
}
flat_data.append(row)
df = pd.DataFrame(flat_data)
return gr.DataFrame(
value=df,
label="Language Results",
show_search="search",
datatype=["markdown", "number", "number", "number", "markdown", "number"],
)
def create_scatter_plot(results):
fig = go.Figure()
x_vals = [lang["speakers"] / 1_000_000 for lang in results] # Convert to millions
y_vals = [lang["bleu"] for lang in results]
labels = [lang["language_name"] for lang in results]
fig.add_trace(
go.Scatter(
x=x_vals,
y=y_vals,
mode="markers+text",
text=labels,
textposition="top center",
hovertemplate="<b>%{text}</b><br>"
+ "Speakers: %{x:.1f}M<br>"
+ "BLEU Score: %{y:.3f}<extra></extra>",
)
)
fig.update_layout(
title="Language Coverage: Speakers vs BLEU Score",
xaxis_title="Number of Speakers (Millions)",
yaxis_title="Average BLEU Score",
height=500,
showlegend=False,
)
# Use log scale for x-axis since speaker numbers vary widely
fig.update_xaxes(type="log")
return fig
# Create the visualization components
with gr.Blocks(title="AI Language Translation Benchmark") as demo:
gr.Markdown("# AI Language Translation Benchmark")
gr.Markdown(
"Comparing translation performance across different AI models and languages"
)
bar_plot = create_model_comparison_plot(results)
scatter_plot = create_scatter_plot(results)
create_leaderboard_df(results)
gr.Plot(value=bar_plot, label="Model Comparison")
create_language_stats_df(results)
gr.Plot(value=scatter_plot, label="Language Coverage")
gr.Markdown(
"""
## Methodology
### Dataset
- Using [FLORES-200](https://huggingface.co/datasets/openlanguagedata/flores_plus) evaluation set, a high-quality human-translated benchmark comprising 200 languages
- Each language is tested with the same 100 sentences
- All translations are from the evaluated language to a fixed set of representative languages sampled by number of speakers
- Language statistics sourced from Ethnologue and Wikidata
### Models & Evaluation
- Models accessed through [OpenRouter](https://openrouter.ai/), including fast models of all big labs, open and closed
- **BLEU Score**: Translations are evaluated using the BLEU metric, which measures how similar the AI's translation is to a human reference translation -- higher is better
### Language Categories
Languages are divided into three tiers based on translation difficulty:
- High-Resource: Top 25% of languages by BLEU score (easiest to translate)
- Mid-Resource: Middle 50% of languages
- Low-Resource: Bottom 25% of languages (hardest to translate)
""",
container=True,
)
demo.launch()
|