File size: 8,807 Bytes
63202a2
ed78196
 
63202a2
 
 
 
 
 
a65282b
df383f6
 
 
 
ed78196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df383f6
 
 
ed78196
 
 
 
df383f6
ed78196
 
 
 
 
 
df383f6
ed78196
 
 
 
df383f6
ed78196
 
 
 
df383f6
ed78196
 
 
 
 
 
 
 
 
 
 
 
df383f6
ed78196
 
df383f6
ed78196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df383f6
 
 
 
 
 
 
 
 
 
 
 
 
 
ed78196
 
63202a2
 
 
 
 
 
 
a65282b
63202a2
 
 
 
 
a65282b
63202a2
a65282b
 
 
63202a2
 
 
a65282b
 
 
 
 
 
 
 
 
63202a2
 
 
 
 
a65282b
 
63202a2
 
 
a65282b
ed78196
 
 
 
 
 
 
 
 
 
df383f6
 
 
ed78196
df383f6
ed78196
 
 
 
 
df383f6
ed78196
 
 
8beab26
ed78196
 
 
df383f6
 
 
 
 
 
 
ed78196
 
d597fe1
 
a65282b
d597fe1
 
 
a65282b
 
 
 
 
 
 
 
 
 
 
 
 
 
d597fe1
 
 
 
 
a65282b
d597fe1
a65282b
d597fe1
 
a65282b
d597fe1
 
a65282b
63202a2
 
 
a65282b
 
 
 
d597fe1
 
a65282b
df383f6
d597fe1
df383f6
d597fe1
63202a2
ed78196
 
0a5d23d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed78196
 
 
0a5d23d
a65282b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import json

import gradio as gr
import pandas as pd
import plotly.graph_objects as go

with open("results.json") as f:
    results = json.load(f)


def mean(lst):
    return sum(lst) / len(lst)


def create_leaderboard_df(results):
    # Sort languages by average BLEU to determine resource categories
    langs_with_bleu = [lang for lang in results if lang["bleu"] is not None]
    sorted_langs = sorted(langs_with_bleu, key=lambda x: x["bleu"], reverse=True)
    n_langs = len(sorted_langs)
    high_cutoff = n_langs // 4  # top 25%
    low_cutoff = n_langs - n_langs // 4  # bottom 25%

    # Create sets of languages for each category
    high_resource = {lang["language_name"] for lang in sorted_langs[:high_cutoff]}
    low_resource = {lang["language_name"] for lang in sorted_langs[low_cutoff:]}

    # Get all model scores with categorization
    model_scores = {}
    for lang in results:
        category = (
            "High-Resource"
            if lang["language_name"] in high_resource
            else "Low-Resource"
            if lang["language_name"] in low_resource
            else "Mid-Resource"
        )

        for score in lang["scores"]:
            model = score["model"]
            if model not in model_scores:
                model_scores[model] = {
                    "High-Resource": [],
                    "Mid-Resource": [],
                    "Low-Resource": [],
                }
            model_scores[model][category].append(score["bleu"])

    # Calculate average scores and create DataFrame
    leaderboard_data = []
    for model, categories in model_scores.items():
        # Calculate averages for each category
        high_avg = (
            round(mean(categories["High-Resource"]), 3)
            if categories["High-Resource"]
            else 0
        )
        mid_avg = (
            round(mean(categories["Mid-Resource"]), 3)
            if categories["Mid-Resource"]
            else 0
        )
        low_avg = (
            round(mean(categories["Low-Resource"]), 3)
            if categories["Low-Resource"]
            else 0
        )

        # Calculate overall average
        all_scores = (
            categories["High-Resource"]
            + categories["Mid-Resource"]
            + categories["Low-Resource"]
        )
        overall_avg = round(sum(all_scores) / len(all_scores), 3)

        model_name = model.split("/")[-1]
        leaderboard_data.append(
            {
                "Model": f"[{model_name}](https://openrouter.ai/{model})",
                "Overall BLEU": overall_avg,
                "High-Resource BLEU": high_avg,
                "Mid-Resource BLEU": mid_avg,
                "Low-Resource BLEU": low_avg,
                "Languages Tested": len(all_scores),
            }
        )

    # Sort by overall BLEU
    df = pd.DataFrame(leaderboard_data)
    df = df.sort_values("Overall BLEU", ascending=False)

    # Add rank and medals
    df["Rank"] = range(1, len(df) + 1)
    df["Rank"] = df["Rank"].apply(
        lambda x: "πŸ₯‡" if x == 1 else "πŸ₯ˆ" if x == 2 else "πŸ₯‰" if x == 3 else str(x)
    )

    # Reorder columns
    df = df[
        [
            "Rank",
            "Model",
            "Overall BLEU",
            "High-Resource BLEU",
            "Mid-Resource BLEU",
            "Low-Resource BLEU",
            "Languages Tested",
        ]
    ]

    return gr.DataFrame(
        value=df,
        label="Model Leaderboard",
        show_search=False,
        datatype=[
            "number",
            "markdown",
            "number",
            "number",
            "number",
            "number",
            "number",
        ],
    )


def create_model_comparison_plot(results):
    # Extract all unique models
    models = set()
    for lang in results:
        for score in lang["scores"]:
            models.add(score["model"])
    models = list(models)

    # Create traces for each model
    traces = []
    for model in models:
        x_vals = []  # languages
        y_vals = []  # BLEU scores

        for lang in results:
            model_score = next(
                (s["bleu"] for s in lang["scores"] if s["model"] == model), None
            )
            if model_score is not None:
                x_vals.append(lang["language_name"])
                y_vals.append(model_score)

        traces.append(
            go.Bar(
                name=model.split("/")[-1],
                x=x_vals,
                y=y_vals,
            )
        )

    fig = go.Figure(data=traces)
    fig.update_layout(
        title="BLEU Scores by Model and Language",
        xaxis_title="Language",
        yaxis_title="BLEU Score",
        barmode="group",
        height=500,
    )
    return fig


def create_language_stats_df(results):
    # Create a list to store flattened data
    flat_data = []

    for lang in results:
        # Find the best model and its BLEU score
        best_score = max(
            lang["scores"] or [{"bleu": None, "model": None}], key=lambda x: x["bleu"]
        )

        model = best_score['model']
        model_name = model.split('/')[-1] if model else "N/A"
        model_link = f"<a href='https://openrouter.ai/{model}' style='text-decoration: none; color: inherit;'>{model_name}</a>" if model else "N/A"
        row = {
            "Language": f"**{lang['language_name']}**",
            "Speakers (M)": round(lang["speakers"] / 1_000_000, 1),
            "Models Tested": len(lang["scores"]),
            "Average BLEU": round(lang["bleu"], 3)
            if lang["bleu"] is not None
            else "N/A",
            "Best Model": model_link,
            "Best Model BLEU": round(best_score["bleu"], 3)
            if best_score["bleu"] is not None
            else "N/A",
            "CommonVoice Hours": lang["commonvoice_hours"],
        }
        flat_data.append(row)

    df = pd.DataFrame(flat_data)
    return gr.DataFrame(
        value=df,
        label="Language Results",
        show_search="search",
        datatype=["markdown", "number", "number", "number", "markdown", "number"],
    )


def create_scatter_plot(results):
    fig = go.Figure()

    x_vals = [lang["speakers"] / 1_000_000 for lang in results]  # Convert to millions
    y_vals = [lang["bleu"] for lang in results]
    labels = [lang["language_name"] for lang in results]

    fig.add_trace(
        go.Scatter(
            x=x_vals,
            y=y_vals,
            mode="markers+text",
            text=labels,
            textposition="top center",
            hovertemplate="<b>%{text}</b><br>"
            + "Speakers: %{x:.1f}M<br>"
            + "BLEU Score: %{y:.3f}<extra></extra>",
        )
    )

    fig.update_layout(
        title="Language Coverage: Speakers vs BLEU Score",
        xaxis_title="Number of Speakers (Millions)",
        yaxis_title="Average BLEU Score",
        height=500,
        showlegend=False,
    )

    # Use log scale for x-axis since speaker numbers vary widely
    fig.update_xaxes(type="log")

    return fig


# Create the visualization components
with gr.Blocks(title="AI Language Translation Benchmark") as demo:
    gr.Markdown("# AI Language Translation Benchmark")
    gr.Markdown(
        "Comparing translation performance across different AI models and languages"
    )

    bar_plot = create_model_comparison_plot(results)
    scatter_plot = create_scatter_plot(results)

    create_leaderboard_df(results)
    gr.Plot(value=bar_plot, label="Model Comparison")
    create_language_stats_df(results)
    gr.Plot(value=scatter_plot, label="Language Coverage")

    gr.Markdown(
        """
        ## Methodology
        ### Dataset
        - Using [FLORES-200](https://huggingface.co/datasets/openlanguagedata/flores_plus) evaluation set, a high-quality human-translated benchmark comprising 200 languages
        - Each language is tested with the same 100 sentences
        - All translations are from the evaluated language to a fixed set of representative languages sampled by number of speakers
        - Language statistics sourced from Ethnologue and Wikidata

        ### Models & Evaluation
        - Models accessed through [OpenRouter](https://openrouter.ai/), including fast models of all big labs, open and closed
        - **BLEU Score**: Translations are evaluated using the BLEU metric, which measures how similar the AI's translation is to a human reference translation -- higher is better
        
        ### Language Categories
        Languages are divided into three tiers based on translation difficulty:
        - High-Resource: Top 25% of languages by BLEU score (easiest to translate)
        - Mid-Resource: Middle 50% of languages
        - Low-Resource: Bottom 25% of languages (hardest to translate)
    """,
        container=True,
    )

demo.launch()