David Pomerenke
Basic Gradio setup
63202a2
raw
history blame
7.67 kB
import asyncio
import json
import os
from os import getenv
import evaluate
import pandas as pd
import requests
from aiolimiter import AsyncLimiter
from dotenv import load_dotenv
from joblib.memory import Memory
from openai import AsyncOpenAI
from tqdm.asyncio import tqdm_asyncio
from transformers import NllbTokenizer
# config
models = [
"openai/gpt-4o-mini",
"anthropic/claude-3.5-haiku",
# "meta-llama/llama-3.1-405b-instruct", # lots of slow repetitions for LRLs
# "mistralai/mistral-large",
"google/gemini-flash-1.5", # very fast
# "qwen/qwen-2.5-72b-instruct", # somewhat slow
]
fast_model = "anthropic/claude-3.5-haiku"
n_sentences = 30
# setup
load_dotenv()
client = AsyncOpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=getenv("OPENROUTER_API_KEY"),
)
cache = Memory(location=".cache", verbose=0).cache
bleu = evaluate.load("bleu")
bertscore = evaluate.load("bertscore")
tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
rate_limit = AsyncLimiter(max_rate=20, time_period=1)
def reorder(language_name):
if "," in language_name and "(" not in language_name:
return language_name.split(",")[1] + " " + language_name.split(",")[0]
return language_name
# load benchmark languages and scripts
benchmark_dir = "data/floresp-v2.0-rc.3/dev"
benchmark_languages = pd.DataFrame(
[f.split(".")[1].split("_", 1) for f in os.listdir(benchmark_dir)],
columns=["language_code", "script_code"],
)
# hack: drop additional script codes for languages with multiple scripts
benchmark_languages = benchmark_languages.groupby("language_code").head(1)
benchmark_languages["in_benchmark"] = True
# load Ethnologue language names
language_names = (
pd.read_csv("data/LanguageCodes.tab", sep="\t")
.rename(columns={"LangID": "language_code", "Name": "language_name"})[
["language_code", "language_name"]
]
.assign(language_name=lambda df: df["language_name"].apply(reorder).str.strip())
)
# load Wikidata speaker stats
language_stats = (
pd.read_csv("data/languages.tsv", sep="\t")
.rename(columns={"iso639_3": "language_code", "maxSpeakers": "speakers"})[
["language_code", "speakers"]
]
.dropna(subset=["language_code"])
)
language_stats["speakers"] = pd.to_numeric(language_stats["speakers"], errors="coerce")
ignored_languages = [
"zho", # Chinese -> use Mandarin (cmn) instead
"ara", # Arabic -> use Standard Arabic (arb) instead
"pus", # Pashto -> use Nothern / Central / Southern Pashto instead (pbt / pst / pbu)
"fas", # Persian -> use Iranian Persian (pes) instead
"msa", # Malay -> use Indonesian (ind) instead
]
language_stats = language_stats[
~language_stats["language_code"].isin(ignored_languages)
]
# load unicode script names
script_names = pd.read_csv("data/ScriptCodes.csv").rename(
columns={"Code": "script_code", "English Name": "script_name"}
)[["script_code", "script_name"]]
# merge data
languages = pd.merge(language_stats, language_names, on="language_code", how="outer")
languages = pd.merge(benchmark_languages, languages, on="language_code", how="outer")
languages = pd.merge(languages, script_names, on="script_code", how="left")
languages["in_benchmark"] = languages["in_benchmark"].fillna(False)
languages = languages.sort_values(by="speakers", ascending=False)
languages = languages.iloc[:5]
# sample languages to translate to
target_languages_NEW = languages[languages["in_benchmark"]].sample(
n=n_sentences, weights="speakers", replace=True, random_state=42
)
# sample languages to analyze with all models
detailed_languages = languages[languages["in_benchmark"]].sample(
n=2, random_state=42
)
# utils
def check_rate_limit():
print(
requests.get(
"https://openrouter.ai/api/v1/auth/key",
headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"},
).json()
)
models = requests.get(
"https://openrouter.ai/api/v1/models",
headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"},
).json()["data"]
model = next((m for m in models if m["id"] == "google/gemini-flash-1.5"), None)
print(model)
@cache
async def complete(**kwargs):
async with rate_limit:
response = await client.chat.completions.create(**kwargs)
if not response.choices:
raise Exception(response)
return response
@cache
async def translate(model, target_language, target_script, sentence):
reply = await complete(
model=model,
messages=[
{
"role": "user",
"content": f"Translate the following text to the {target_language} language; use the {target_script} script; reply only with the translation:\n\n{sentence}",
}
],
temperature=0,
max_tokens=1024,
)
return reply.choices[0].message.content
def mean(l):
return sum(l) / len(l) if l else 0
def load_sentences(language):
return open(
f"{benchmark_dir}/dev.{language.language_code}_{language.script_code}"
).readlines()
# evaluation!
async def main():
results = []
for language in list(languages.itertuples()):
name = (
language.language_name
if not pd.isna(language.language_name)
else language.language_code
)
print(name)
scores = []
if language.in_benchmark:
original_sentences_NEW = load_sentences(language)[:n_sentences]
for model in models:
if (
model != fast_model
and language.language_code
not in detailed_languages.language_code.values
):
continue
print(model)
predictions = [
translate(
model, language.language_name, language.script_name, sentence
)
for sentence, language in zip(original_sentences_NEW, target_languages_NEW.itertuples())
]
predictions = await tqdm_asyncio.gather(*predictions, miniters=1)
target_sentences_NEW = [
load_sentences(lang)[i]
for i, lang in enumerate(target_languages_NEW.itertuples())
]
metrics_bleu = bleu.compute(
predictions=predictions,
references=target_sentences_NEW,
tokenizer=tokenizer.tokenize,
)
# metrics_bert = bertscore.compute(
# predictions=predictions,
# references=target_sentences,
# model_type="distilbert-base-uncased",
# )
scores.append(
{
"model": model,
"bleu": metrics_bleu["bleu"],
# "bert_score": mean(metrics_bert["f1"]),
}
)
results.append(
{
"language_name": name,
"language_code": language.language_code,
"speakers": language.speakers if not pd.isna(language.speakers) else 0,
"scores": scores,
"bleu": mean([s["bleu"] for s in scores]) or -0.02,
# "bert_score": mean([s["bert_score"] for s in scores]),
}
)
with open("results.json", "w") as f:
json.dump(results, f, indent=2, ensure_ascii=False)
if __name__ == "__main__":
# check_rate_limit()
asyncio.run(main())