File size: 7,673 Bytes
3a246c9
 
 
 
 
 
50128d8
9aa08d7
 
3a246c9
50128d8
3a246c9
 
6b6f157
3a246c9
 
 
698d104
 
 
 
63202a2
698d104
3a246c9
698d104
6b6f157
3a246c9
 
e6f1c56
3a246c9
 
 
 
 
6b6f157
86b8b3a
6b6f157
 
9aa08d7
 
86b8b3a
 
 
 
 
6b6f157
63202a2
6b6f157
 
 
 
 
 
 
 
 
 
63202a2
6b6f157
 
 
 
 
 
 
 
63202a2
6b6f157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63202a2
6b6f157
 
 
 
 
 
 
 
 
63202a2
6b6f157
63202a2
 
 
6b6f157
 
63202a2
 
6b6f157
86b8b3a
 
 
9aa08d7
 
 
 
 
 
 
5640508
 
 
 
 
 
0e5691e
 
 
 
9aa08d7
 
5640508
 
9aa08d7
0e5691e
 
3a246c9
0e5691e
 
3a246c9
 
 
 
9aa08d7
3a246c9
 
5640508
9aa08d7
3a246c9
 
 
 
6b6f157
 
50128d8
 
6b6f157
 
 
 
86b8b3a
 
 
3a246c9
 
63202a2
6b6f157
 
 
 
 
63202a2
6b6f157
 
63202a2
6b6f157
 
 
 
63202a2
6b6f157
 
63202a2
 
6b6f157
 
 
 
63202a2
6b6f157
 
63202a2
 
 
 
6b6f157
 
63202a2
6b6f157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63202a2
 
3a246c9
 
 
9aa08d7
3a246c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import asyncio
import json
import os
from os import getenv

import evaluate
import pandas as pd
import requests
from aiolimiter import AsyncLimiter
from dotenv import load_dotenv
from joblib.memory import Memory
from openai import AsyncOpenAI
from tqdm.asyncio import tqdm_asyncio
from transformers import NllbTokenizer

# config
models = [
    "openai/gpt-4o-mini",
    "anthropic/claude-3.5-haiku",
    # "meta-llama/llama-3.1-405b-instruct",  # lots of slow repetitions for LRLs
    # "mistralai/mistral-large",
    "google/gemini-flash-1.5",  # very fast
    # "qwen/qwen-2.5-72b-instruct",  # somewhat slow
]
fast_model = "anthropic/claude-3.5-haiku"
n_sentences = 30

# setup
load_dotenv()
client = AsyncOpenAI(
    base_url="https://openrouter.ai/api/v1",
    api_key=getenv("OPENROUTER_API_KEY"),
)
cache = Memory(location=".cache", verbose=0).cache
bleu = evaluate.load("bleu")
bertscore = evaluate.load("bertscore")
tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
rate_limit = AsyncLimiter(max_rate=20, time_period=1)


def reorder(language_name):
    if "," in language_name and "(" not in language_name:
        return language_name.split(",")[1] + " " + language_name.split(",")[0]
    return language_name

# load benchmark languages and scripts
benchmark_dir = "data/floresp-v2.0-rc.3/dev"
benchmark_languages = pd.DataFrame(
    [f.split(".")[1].split("_", 1) for f in os.listdir(benchmark_dir)],
    columns=["language_code", "script_code"],
)
# hack: drop additional script codes for languages with multiple scripts
benchmark_languages = benchmark_languages.groupby("language_code").head(1)
benchmark_languages["in_benchmark"] = True

# load Ethnologue language names
language_names = (
    pd.read_csv("data/LanguageCodes.tab", sep="\t")
    .rename(columns={"LangID": "language_code", "Name": "language_name"})[
        ["language_code", "language_name"]
    ]
    .assign(language_name=lambda df: df["language_name"].apply(reorder).str.strip())
)

# load Wikidata speaker stats
language_stats = (
    pd.read_csv("data/languages.tsv", sep="\t")
    .rename(columns={"iso639_3": "language_code", "maxSpeakers": "speakers"})[
        ["language_code", "speakers"]
    ]
    .dropna(subset=["language_code"])
)
language_stats["speakers"] = pd.to_numeric(language_stats["speakers"], errors="coerce")
ignored_languages = [
    "zho",  # Chinese -> use Mandarin (cmn) instead
    "ara",  # Arabic -> use Standard Arabic (arb) instead
    "pus",  # Pashto -> use Nothern / Central / Southern Pashto instead (pbt / pst / pbu)
    "fas",  # Persian -> use Iranian Persian (pes) instead
    "msa",  # Malay -> use Indonesian (ind) instead
]
language_stats = language_stats[
    ~language_stats["language_code"].isin(ignored_languages)
]

# load unicode script names
script_names = pd.read_csv("data/ScriptCodes.csv").rename(
    columns={"Code": "script_code", "English Name": "script_name"}
)[["script_code", "script_name"]]

# merge data
languages = pd.merge(language_stats, language_names, on="language_code", how="outer")
languages = pd.merge(benchmark_languages, languages, on="language_code", how="outer")
languages = pd.merge(languages, script_names, on="script_code", how="left")
languages["in_benchmark"] = languages["in_benchmark"].fillna(False)
languages = languages.sort_values(by="speakers", ascending=False)
languages = languages.iloc[:5]

# sample languages to translate to
target_languages_NEW = languages[languages["in_benchmark"]].sample(
    n=n_sentences, weights="speakers", replace=True, random_state=42
)
# sample languages to analyze with all models
detailed_languages = languages[languages["in_benchmark"]].sample(
    n=2, random_state=42
)


# utils
def check_rate_limit():
    print(
        requests.get(
            "https://openrouter.ai/api/v1/auth/key",
            headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"},
        ).json()
    )
    models = requests.get(
        "https://openrouter.ai/api/v1/models",
        headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"},
    ).json()["data"]
    model = next((m for m in models if m["id"] == "google/gemini-flash-1.5"), None)
    print(model)


@cache
async def complete(**kwargs):
    async with rate_limit:
        response = await client.chat.completions.create(**kwargs)
    if not response.choices:
        raise Exception(response)
    return response


@cache
async def translate(model, target_language, target_script, sentence):
    reply = await complete(
        model=model,
        messages=[
            {
                "role": "user",
                "content": f"Translate the following text to the {target_language} language; use the {target_script} script; reply only with the translation:\n\n{sentence}",
            }
        ],
        temperature=0,
        max_tokens=1024,
    )
    return reply.choices[0].message.content


def mean(l):
    return sum(l) / len(l) if l else 0


def load_sentences(language):
    return open(
        f"{benchmark_dir}/dev.{language.language_code}_{language.script_code}"
    ).readlines()


# evaluation!
async def main():
    results = []
    for language in list(languages.itertuples()):
        name = (
            language.language_name
            if not pd.isna(language.language_name)
            else language.language_code
        )
        print(name)
        scores = []
        if language.in_benchmark:
            original_sentences_NEW = load_sentences(language)[:n_sentences]
            for model in models:
                if (
                    model != fast_model
                    and language.language_code
                    not in detailed_languages.language_code.values
                ):
                    continue
                
                print(model)
                predictions = [
                    translate(
                        model, language.language_name, language.script_name, sentence
                    )
                    for sentence, language in zip(original_sentences_NEW, target_languages_NEW.itertuples())
                ]
                predictions = await tqdm_asyncio.gather(*predictions, miniters=1)
                target_sentences_NEW = [
                    load_sentences(lang)[i]
                    for i, lang in enumerate(target_languages_NEW.itertuples())
                ]
                metrics_bleu = bleu.compute(
                    predictions=predictions,
                    references=target_sentences_NEW,
                    tokenizer=tokenizer.tokenize,
                )
                # metrics_bert = bertscore.compute(
                #     predictions=predictions,
                #     references=target_sentences,
                #     model_type="distilbert-base-uncased",
                # )
                scores.append(
                    {
                        "model": model,
                        "bleu": metrics_bleu["bleu"],
                        # "bert_score": mean(metrics_bert["f1"]),
                    }
                )
        results.append(
            {
                "language_name": name,
                "language_code": language.language_code,
                "speakers": language.speakers if not pd.isna(language.speakers) else 0,
                "scores": scores,
                "bleu": mean([s["bleu"] for s in scores]) or -0.02,
                # "bert_score": mean([s["bert_score"] for s in scores]),
            }
        )
    with open("results.json", "w") as f:
        json.dump(results, f, indent=2, ensure_ascii=False)


if __name__ == "__main__":
    # check_rate_limit()
    asyncio.run(main())