File size: 20,287 Bytes
3a246c9 e92634d d5fc8b3 3d9cde9 56081d8 3a246c9 3d9cde9 3a246c9 50128d8 9aa08d7 3a246c9 3d9cde9 50128d8 56081d8 3a246c9 c4c59ec 56081d8 7fc657e 3a246c9 6b6f157 3a246c9 3d9cde9 3a246c9 d5fc8b3 7fc657e d5fc8b3 175993f 1b634f3 d5fc8b3 3a246c9 3d9cde9 1ab3999 3d9cde9 1ab3999 3d9cde9 6b6f157 3a246c9 3d9cde9 e6f1c56 3a246c9 6b6f157 086a421 1ab3999 6b6f157 3d9cde9 9aa08d7 3d9cde9 9aa08d7 d5fc8b3 56081d8 d5fc8b3 8190782 d5fc8b3 29c8ef6 08735bb d5fc8b3 8190782 56081d8 6b6f157 63202a2 6b6f157 56081d8 6b6f157 56081d8 6b6f157 d5fc8b3 56081d8 d5fc8b3 6b6f157 3d9cde9 1ab3999 3d9cde9 1ab3999 3d9cde9 1ab3999 6b6f157 d5fc8b3 8beab26 d5fc8b3 8190782 d5fc8b3 8190782 d5fc8b3 8190782 d5fc8b3 1ab3999 d5fc8b3 3d9cde9 8beab26 63202a2 8beab26 63202a2 6b6f157 3d9cde9 86b8b3a 3d9cde9 0e5691e 3d9cde9 9aa08d7 5640508 9aa08d7 0e5691e 8190782 56081d8 0e5691e 3a246c9 56081d8 3a246c9 5640508 9aa08d7 3a246c9 56081d8 086a421 56081d8 086a421 56081d8 4f572a5 56081d8 50128d8 7fc657e e92634d 7fc657e e92634d 1b634f3 e92634d 1b634f3 7fc657e 1b634f3 7fc657e 1b634f3 7fc657e 1b634f3 7fc657e 1b634f3 7fc657e e92634d 4f572a5 e92634d 1ab3999 3d9cde9 1ab3999 3d9cde9 1ab3999 56081d8 86b8b3a 3a246c9 7fc657e 56081d8 3d9cde9 56081d8 7fc657e 3d9cde9 7fc657e 4f572a5 e92634d 3d9cde9 e92634d 3d9cde9 4f572a5 56081d8 4f572a5 3d9cde9 7fc657e 3d9cde9 56081d8 7fc657e 56081d8 3d9cde9 e92634d 3d9cde9 4f572a5 3d9cde9 4f572a5 6b6f157 4f572a5 3d9cde9 1167b2d 6b6f157 4f572a5 56081d8 4f572a5 08735bb 3d9cde9 4f572a5 29c8ef6 08735bb 56081d8 63202a2 4f572a5 3a246c9 3d9cde9 3a246c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
import asyncio
import json
import os
import random
import re
import tarfile
from datetime import date
from os import getenv
from pathlib import Path
import evaluate
import pandas as pd
import requests
from aiolimiter import AsyncLimiter
from dotenv import load_dotenv
from elevenlabs import AsyncElevenLabs
from huggingface_hub import AsyncInferenceClient
from joblib.memory import Memory
from langcodes import Language, standardize_tag
from language_data.population_data import LANGUAGE_SPEAKING_POPULATION
from openai import AsyncOpenAI
from pyglottolog import Glottolog
from requests import get
from rich import print
from tqdm.asyncio import tqdm_asyncio
from transformers import NllbTokenizer
# ===== config =====
# for development purposes, all languages will be evaluated on the fast models
# and only a sample of languages will be evaluated on all models
models = [
"openai/gpt-4o-mini", # 0.6$/M tokens
# "anthropic/claude-3.5-haiku", # 4$/M tokens -> too expensive for dev
"meta-llama/llama-3.3-70b-instruct", # 0.3$/M tokens
"mistralai/mistral-small-24b-instruct-2501", # 0.14$/M tokens
"google/gemini-2.0-flash-001", # 0.4$/M tokens
# "qwen/qwen-turbo", # 0.2$/M tokens; recognizes "inappropriate content"
# "deepseek/deepseek-chat", # 0.9$/M tokens
"microsoft/phi-4", # 0.07$/M tokens
]
model_fast = "meta-llama/llama-3.3-70b-instruct"
transcription_models = [
"elevenlabs/scribe_v1",
"openai/whisper-large-v3-turbo",
# "openai/whisper-small",
# "facebook/seamless-m4t-v2-large",
]
transcription_model_fast = "openai/whisper-large-v3-turbo"
n_sentences = 30
# ===== setup =====
load_dotenv()
client = AsyncOpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=getenv("OPENROUTER_API_KEY"),
)
cache = Memory(location=".cache", verbose=0).cache
bleu = evaluate.load("bleu")
chrf = evaluate.load("chrf")
wer = evaluate.load("wer")
tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
openrouter_rate_limit = AsyncLimiter(max_rate=20, time_period=1)
elevenlabs_rate_limit = AsyncLimiter(max_rate=2, time_period=1)
huggingface_rate_limit = AsyncLimiter(max_rate=5, time_period=1)
# ===== load metadata =====
# load general language data
languages = {
lang: pop
for lang, pop in LANGUAGE_SPEAKING_POPULATION.items()
if not re.match(r".*-[A-Z]{2}$", lang)
}
languages = pd.DataFrame(list(languages.items()), columns=["bcp_47", "speakers"])
languages["language_name"] = languages["bcp_47"].apply(
lambda x: Language.get(x).display_name()
)
# load script codes and names
scripts = pd.read_csv("data/ScriptCodes.csv").rename(
columns={"Code": "iso15924", "English Name": "script_name"}
)
def population(bcp_47):
items = {
re.sub(r"^[a-z]+-", "", lang): pop
for lang, pop in LANGUAGE_SPEAKING_POPULATION.items()
if re.match(rf"^{bcp_47}-[A-Z]{{2}}$", lang)
}
return items
glottolog = Glottolog("data/glottolog-5.1")
@cache
def language_family(iso_639_3):
languoid = glottolog.languoid(iso_639_3)
return languoid.family.name if languoid else None
def script_name(iso15924):
return scripts[scripts["iso15924"] == iso15924]["script_name"].values[0]
def aggregate_flores_paths(flores_paths):
# takes a list of paths from the same language but different scripts
# returns the one with the largest writing population
if len(flores_paths) == 1:
return flores_paths.values[0]
populations = [
Language.get(standardize_tag(x, macro=True)).writing_population()
for x in flores_paths.values
]
return flores_paths.values[populations.index(max(populations))]
# load benchmark languages and scripts
benchmark_dir = "data/floresp-v2.0-rc.3/dev"
benchmark_languages = pd.DataFrame(
[f.split(".")[1] for f in os.listdir(benchmark_dir)],
columns=["flores_path"],
)
benchmark_languages["bcp_47"] = benchmark_languages["flores_path"].apply(
lambda x: standardize_tag(x, macro=True),
)
# ignore script (language is language)
benchmark_languages["bcp_47"] = benchmark_languages["bcp_47"].apply(
lambda x: re.sub(r"-[A-Z][a-z]+$", "", x)
)
benchmark_languages = (
benchmark_languages.groupby("bcp_47")
.agg({"flores_path": aggregate_flores_paths})
.reset_index()
)
fleurs_tags = "af_za,am_et,ar_eg,as_in,ast_es,az_az,be_by,bg_bg,bn_in,bs_ba,ca_es,ceb_ph,ckb_iq,cmn_hans_cn,cs_cz,cy_gb,da_dk,de_de,el_gr,en_us,es_419,et_ee,fa_ir,ff_sn,fi_fi,fil_ph,fr_fr,ga_ie,gl_es,gu_in,ha_ng,he_il,hi_in,hr_hr,hu_hu,hy_am,id_id,ig_ng,is_is,it_it,ja_jp,jv_id,ka_ge,kam_ke,kea_cv,kk_kz,km_kh,kn_in,ko_kr,ky_kg,lb_lu,lg_ug,ln_cd,lo_la,lt_lt,luo_ke,lv_lv,mi_nz,mk_mk,ml_in,mn_mn,mr_in,ms_my,mt_mt,my_mm,nb_no,ne_np,nl_nl,nso_za,ny_mw,oc_fr,om_et,or_in,pa_in,pl_pl,ps_af,pt_br,ro_ro,ru_ru,sd_in,sk_sk,sl_si,sn_zw,so_so,sr_rs,sv_se,sw_ke,ta_in,te_in,tg_tj,th_th,tr_tr,uk_ua,umb_ao,ur_pk,uz_uz,vi_vn,wo_sn,xh_za,yo_ng,yue_hant_hk,zu_za"
fleurs = pd.DataFrame(fleurs_tags.split(","), columns=["fleurs_tag"])
fleurs["bcp_47"] = fleurs["fleurs_tag"].apply(
lambda x: standardize_tag(x.rsplit("_")[0], macro=True)
)
def download_file(url, path):
response = requests.get(url)
with open(path, "wb") as f:
f.write(response.content)
def download_fleurs():
# the huggingface loader does not allow loading only the dev set, so do it manually
for language in languages[languages["in_benchmark"]].itertuples():
tar_url = f"https://huggingface.co/datasets/google/fleurs/resolve/main/data/{language.fleurs_tag}/audio/dev.tar.gz"
tar_path = Path(f"data/fleurs/{language.fleurs_tag}/audio/dev.tar.gz")
if not tar_path.exists():
print(f"Downloading {tar_url} to {tar_path}")
tar_path.parent.mkdir(parents=True, exist_ok=True)
download_file(tar_url, tar_path)
with tarfile.open(tar_path, "r:gz") as tar:
tar.extractall(path=f"data/fleurs/{language.fleurs_tag}/audio")
tsv_url = f"https://huggingface.co/datasets/google/fleurs/resolve/main/data/{language.fleurs_tag}/dev.tsv"
tsv_path = Path(f"data/fleurs/{language.fleurs_tag}/dev.tsv")
if not tsv_path.exists():
print(f"Downloading {tsv_url} to {tsv_path}")
tsv_path.parent.mkdir(parents=True, exist_ok=True)
download_file(tsv_url, tsv_path)
# load CommonVoice stats
@cache # cache for 1 day
def get_commonvoice_stats(date: date):
return get("https://commonvoice.mozilla.org/api/v1/stats/languages").json()
commonvoice_stats = pd.DataFrame(get_commonvoice_stats(date.today())).rename(
columns={"locale": "commonvoice_locale", "validatedHours": "commonvoice_hours"}
)[["commonvoice_locale", "commonvoice_hours"]]
# ignore country (language is language) (in practive this is only relevant to zh-CN/zh-TW/zh-HK)
commonvoice_stats["bcp_47"] = commonvoice_stats["commonvoice_locale"].apply(
lambda x: re.sub(r"-[A-Z]{2}$", "", x)
)
commonvoice_stats["bcp_47"] = commonvoice_stats["bcp_47"].apply(
lambda x: standardize_tag(x, macro=True)
) # this does not really seem to get macrolanguages though, e.g. not for Quechua
commonvoice_stats = (
commonvoice_stats.groupby("bcp_47")
.agg({"commonvoice_hours": "sum", "commonvoice_locale": "first"})
.reset_index()
)
# merge data
languages = pd.merge(
languages, benchmark_languages, on="bcp_47", how="left"
) # "left" because keep it simple for now
languages = pd.merge(
languages, fleurs, on="bcp_47", how="left"
) # "left" because keep it simple for now
languages = pd.merge(
languages, commonvoice_stats, on="bcp_47", how="left"
) # "left" because keep it simple for now
languages["in_benchmark"] = languages["bcp_47"].isin(benchmark_languages["bcp_47"])
languages = languages.sort_values(by="speakers", ascending=False).iloc[:5]
# sample languages to translate to
target_languages = languages[languages["in_benchmark"]].sample(
n=n_sentences, weights="speakers", replace=True, random_state=42
)
# sample languages to analyze with all models
detailed_languages = languages[languages["in_benchmark"]].iloc[:2]
# ===== define tasks and metrics =====
@cache
async def complete(**kwargs):
async with openrouter_rate_limit:
response = await client.chat.completions.create(**kwargs)
if not response.choices:
raise Exception(response)
return response
def load_sentences(language):
return open(f"{benchmark_dir}/dev.{language.flores_path}").readlines()
@cache
async def translate_and_evaluate(model, original_language_bcp_47, sentence_nr):
original_language = languages[languages["bcp_47"] == original_language_bcp_47].iloc[
0
]
target_language = target_languages.iloc[sentence_nr]
original_sentence = load_sentences(original_language)[sentence_nr].strip()
target_sentence = load_sentences(target_language)[sentence_nr].strip()
script = script_name(target_language.flores_path.split("_")[1])
reply = await complete(
model=model,
messages=[
{
"role": "user",
"content": f"Translate the following text to the {target_language.language_name} language; use the {script} script; reply only with the translation:\n\n{original_sentence}",
}
],
temperature=0,
max_tokens=1024,
)
prediction = reply.choices[0].message.content.strip()
bleu_score = bleu.compute(
predictions=[prediction],
references=[target_sentence],
tokenizer=tokenizer.tokenize,
)
chrf_score = chrf.compute(predictions=[prediction], references=[target_sentence])
return {
"model": model,
"bcp_47": original_language["bcp_47"],
"mt_bleu": bleu_score["bleu"],
"mt_chrf": chrf_score["score"],
"sentence_nr": sentence_nr,
}
metadata = pd.read_csv("data/floresp-v2.0-rc.3/metadata_dev.tsv", sep="\t")
@cache
async def classify_and_evaluate(model, language_bcp_47, nr):
language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
sentences = pd.DataFrame(load_sentences(language), columns=["text"])
sentences = pd.concat([metadata, sentences], axis=1)
sentences = sentences.dropna(subset=["topic"])
sentences["topic"] = sentences["topic"].str.lower()
paragraphs = (
sentences.groupby("URL").agg({"text": " ".join, "topic": "first"}).reset_index()
)
top_topics = paragraphs.value_counts("topic").head(5).index
paragraphs = paragraphs[paragraphs["topic"].isin(top_topics)]
examples = pd.concat(
[
paragraphs[paragraphs["topic"] == t].sample(n=5, random_state=42)
for t in top_topics
]
).sample(frac=1, random_state=42)
test_paragraphs = paragraphs[~paragraphs["URL"].isin(examples["URL"])].sample(
frac=1, random_state=42
)
test_paragraph = test_paragraphs.iloc[nr]
def topic_to_number(topic):
return top_topics.get_loc(topic)
messages = []
for example in examples.itertuples():
messages += [
{"role": "user", "content": example.text},
{"role": "assistant", "content": str(topic_to_number(example.topic))},
]
reply = await complete(
model=model,
messages=[
*messages,
{
"role": "user",
"content": test_paragraph.text,
},
],
temperature=0,
max_tokens=5,
)
try:
prediction = int(reply.choices[0].message.content.strip())
except ValueError:
prediction = -1
return {
"model": model,
"bcp_47": language["bcp_47"],
"true": topic_to_number(test_paragraph.topic),
"pred": prediction,
"sentence_nr": nr,
}
def corrupt_sentence(sentence):
# replace 5% of the sentence with <mask>
mask_length = round(len(sentence) * 0.05)
start = random.randint(0, len(sentence) - mask_length)
end = start + mask_length
return sentence[:start] + "<mask>" + sentence[end:]
@cache
async def mlm_and_evaluate(model, language_bcp_47, nr):
language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
sentences = pd.DataFrame(load_sentences(language), columns=["text"])
sentences["corrupt_text"] = sentences["text"].apply(corrupt_sentence)
examples = sentences.sample(n=10, random_state=42)
test_sentences = sentences[~sentences["text"].isin(examples["text"])].sample(
frac=1, random_state=42
)
test_sentence = test_sentences.iloc[nr]
messages = []
for example in examples.itertuples():
messages += [
{"role": "user", "content": example.corrupt_text},
{"role": "assistant", "content": example.text},
]
reply = await complete(
model=model,
messages=[
*messages,
{
"role": "user",
"content": test_sentence.corrupt_text,
},
],
temperature=0,
max_tokens=1024,
)
prediction = reply.choices[0].message.content.strip()
chrf_score = chrf.compute(predictions=[prediction], references=[test_sentence.text])
return {
"model": model,
"bcp_47": language["bcp_47"],
"mlm_chrf": chrf_score["score"],
"sentence_nr": nr,
}
@cache
async def transcribe_elevenlabs(path, model):
modelname = model.split("/")[-1]
client = AsyncElevenLabs(api_key=getenv("ELEVENLABS_API_KEY"))
async with elevenlabs_rate_limit:
with open(path, "rb") as file:
response = await client.speech_to_text.convert(model_id=modelname, file=file)
return response.text
@cache
async def transcribe_huggingface(path, model):
client = AsyncInferenceClient(api_key=getenv("HUGGINGFACE_ACCESS_TOKEN"))
async with huggingface_rate_limit:
output = await client.automatic_speech_recognition(model=model, audio=path)
return output.text
async def transcribe(path, model="elevenlabs/scribe_v1"):
provider, modelname = model.split("/")
match provider:
case "elevenlabs":
return await transcribe_elevenlabs(path, modelname)
case "openai" | "facebook":
return await transcribe_huggingface(path, model)
case _:
raise ValueError(f"Model {model} not supported")
async def transcribe_and_evaluate(model, language_bcp_47, nr):
language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
fleurs = pd.read_csv(f"data/fleurs/{language.fleurs_tag}/dev.tsv", sep="\t", names=["id", "fname", "raw_transcription", "transcription", "words", "id2", "gender"])
item = fleurs.iloc[nr]
path = f"data/fleurs/{language.fleurs_tag}/audio/dev/{item.fname}"
pred = await transcribe(path, model=model)
score = wer.compute(predictions=[pred], references=[item.transcription])
return {
"model": model,
"bcp_47": language["bcp_47"],
"asr_wer": score,
"sentence_nr": nr,
}
# ===== run evaluation and aggregate results =====
def mean(lst):
return sum(lst) / len(lst) if lst else 0
async def main():
print("evaluate translation")
translation_scores = [
translate_and_evaluate(model, original_language.bcp_47, i)
for i in range(n_sentences)
for original_language in languages.itertuples()
for model in models
if original_language.in_benchmark
and (
model == model_fast
or original_language.bcp_47 in detailed_languages.bcp_47.values
)
]
translation_scores = await tqdm_asyncio.gather(*translation_scores, miniters=1)
print("evaluate classification")
classification_scores = [
classify_and_evaluate(model, language.bcp_47, i)
for i in range(n_sentences)
for language in languages.itertuples()
for model in models
if language.in_benchmark
and (model == model_fast or language.bcp_47 in detailed_languages.bcp_47.values)
]
classification_scores = await tqdm_asyncio.gather(
*classification_scores, miniters=1
)
print("evaluate masked language modeling")
mlm_scores = [
mlm_and_evaluate(model, language.bcp_47, i)
for i in range(n_sentences)
for language in languages.itertuples()
for model in models
if language.in_benchmark
and (model == model_fast or language.bcp_47 in detailed_languages.bcp_47.values)
]
mlm_scores = await tqdm_asyncio.gather(*mlm_scores, miniters=1)
print("evaluate transcription")
transcription_scores = [
transcribe_and_evaluate(model, language.bcp_47, i)
for i in range(n_sentences)
for language in languages.itertuples()
for model in transcription_models
if language.in_benchmark
and (
model == transcription_model_fast
or language.bcp_47 in detailed_languages.bcp_47.values
)
]
transcription_scores = await tqdm_asyncio.gather(*transcription_scores, miniters=1)
all_results = []
for language in languages.itertuples():
results = []
for model in models + transcription_models:
scores_mt = [
score
for score in translation_scores
if score["bcp_47"] == language.bcp_47 and score["model"] == model
]
scores_cls = [
score
for score in classification_scores
if score["bcp_47"] == language.bcp_47 and score["model"] == model
]
scores_mlm = [
score
for score in mlm_scores
if score["bcp_47"] == language.bcp_47 and score["model"] == model
]
scores_asr = [
score
for score in transcription_scores
if score["bcp_47"] == language.bcp_47 and score["model"] == model
]
mt_bleu = mean([s["mt_bleu"] for s in scores_mt])
mt_chrf = mean([s["mt_chrf"] for s in scores_mt])
cls_acc = mean([s["true"] == s["pred"] for s in scores_cls])
mlm_chrf = mean([s["mlm_chrf"] for s in scores_mlm])
asr_wer = mean([s["asr_wer"] for s in scores_asr])
overall_score = (mt_chrf / 100 + cls_acc + mlm_chrf / 100) / 3
if scores_mt or scores_asr:
results.append(
{
"model": model,
"mt_bleu": mt_bleu,
"mt_chrf": mt_chrf,
"cls_acc": cls_acc,
"mlm_chrf": mlm_chrf,
"asr_wer": asr_wer,
"overall_score": overall_score,
}
)
if results:
all_results.append(
{
"language_name": language.language_name,
"bcp_47": language.bcp_47,
"speakers": language.speakers,
"scores": results,
"mt_bleu": mean([s["mt_bleu"] for s in results]),
"mt_chrf": mean([s["mt_chrf"] for s in results]),
"cls_acc": mean([s["cls_acc"] for s in results]),
"mlm_chrf": mean([s["mlm_chrf"] for s in results]),
"asr_wer": mean([s["asr_wer"] for s in results]),
"overall_score": mean([s["overall_score"] for s in results]),
"commonvoice_hours": language.commonvoice_hours
if not pd.isna(language.commonvoice_hours)
else None,
"commonvoice_locale": language.commonvoice_locale
if not pd.isna(language.commonvoice_locale)
else None,
"population": population(language.bcp_47),
"language_family": language_family(
language.flores_path.split("_")[0]
),
}
)
with open("results.json", "w") as f:
json.dump(all_results, f, indent=2, ensure_ascii=False)
if __name__ == "__main__":
download_fleurs()
asyncio.run(main())
|