File size: 20,287 Bytes
3a246c9
 
 
e92634d
d5fc8b3
3d9cde9
56081d8
3a246c9
3d9cde9
3a246c9
 
50128d8
9aa08d7
 
3a246c9
3d9cde9
 
50128d8
56081d8
 
3a246c9
c4c59ec
56081d8
7fc657e
3a246c9
6b6f157
3a246c9
3d9cde9
 
 
 
3a246c9
d5fc8b3
7fc657e
d5fc8b3
 
 
175993f
1b634f3
d5fc8b3
3a246c9
3d9cde9
1ab3999
 
 
3d9cde9
 
1ab3999
3d9cde9
6b6f157
3a246c9
3d9cde9
 
e6f1c56
3a246c9
 
 
 
 
6b6f157
086a421
1ab3999
6b6f157
3d9cde9
 
 
9aa08d7
3d9cde9
9aa08d7
d5fc8b3
 
 
 
 
 
 
56081d8
 
 
d5fc8b3
 
8190782
 
 
 
d5fc8b3
29c8ef6
 
 
 
 
 
 
 
 
08735bb
 
 
 
 
 
 
 
 
d5fc8b3
 
 
8190782
56081d8
 
 
 
 
 
 
 
 
 
 
 
6b6f157
63202a2
6b6f157
56081d8
 
6b6f157
56081d8
 
6b6f157
d5fc8b3
 
 
 
 
 
56081d8
d5fc8b3
6b6f157
 
3d9cde9
 
1ab3999
 
 
 
 
3d9cde9
 
 
 
1ab3999
 
3d9cde9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ab3999
6b6f157
d5fc8b3
 
8beab26
 
 
d5fc8b3
 
8190782
 
d5fc8b3
8190782
d5fc8b3
 
 
 
 
8190782
 
 
 
 
d5fc8b3
 
 
 
 
1ab3999
 
 
d5fc8b3
 
 
 
 
3d9cde9
8beab26
63202a2
8beab26
63202a2
6b6f157
 
3d9cde9
86b8b3a
 
3d9cde9
0e5691e
 
 
 
3d9cde9
9aa08d7
5640508
 
9aa08d7
0e5691e
8190782
56081d8
 
 
 
 
 
 
 
 
 
 
 
 
0e5691e
3a246c9
 
 
 
56081d8
3a246c9
 
5640508
9aa08d7
3a246c9
56081d8
086a421
56081d8
 
 
 
086a421
56081d8
 
 
4f572a5
 
56081d8
 
50128d8
 
7fc657e
 
e92634d
7fc657e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e92634d
1b634f3
 
e92634d
1b634f3
7fc657e
 
 
1b634f3
7fc657e
 
 
 
 
 
 
 
 
 
 
1b634f3
7fc657e
1b634f3
 
 
 
7fc657e
 
 
1b634f3
7fc657e
 
 
 
 
e92634d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f572a5
e92634d
 
 
 
1ab3999
3d9cde9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ab3999
 
3d9cde9
 
 
 
 
 
 
 
 
 
 
 
 
 
1ab3999
 
56081d8
 
86b8b3a
 
3a246c9
7fc657e
 
56081d8
 
 
 
 
 
3d9cde9
56081d8
 
 
7fc657e
 
 
 
 
 
 
 
3d9cde9
7fc657e
 
 
 
4f572a5
e92634d
 
 
 
 
 
3d9cde9
e92634d
 
3d9cde9
 
 
 
 
 
 
 
 
 
 
 
 
4f572a5
56081d8
4f572a5
3d9cde9
 
7fc657e
 
 
 
3d9cde9
56081d8
7fc657e
56081d8
 
3d9cde9
e92634d
 
 
 
3d9cde9
 
 
 
 
 
 
 
 
 
4f572a5
3d9cde9
4f572a5
6b6f157
 
4f572a5
 
 
 
3d9cde9
1167b2d
6b6f157
 
4f572a5
 
56081d8
 
 
 
4f572a5
 
 
08735bb
 
3d9cde9
4f572a5
29c8ef6
 
 
 
 
 
 
08735bb
 
 
56081d8
 
63202a2
4f572a5
3a246c9
 
 
3d9cde9
3a246c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import asyncio
import json
import os
import random
import re
import tarfile
from datetime import date
from os import getenv
from pathlib import Path

import evaluate
import pandas as pd
import requests
from aiolimiter import AsyncLimiter
from dotenv import load_dotenv
from elevenlabs import AsyncElevenLabs
from huggingface_hub import AsyncInferenceClient
from joblib.memory import Memory
from langcodes import Language, standardize_tag
from language_data.population_data import LANGUAGE_SPEAKING_POPULATION
from openai import AsyncOpenAI
from pyglottolog import Glottolog
from requests import get
from rich import print
from tqdm.asyncio import tqdm_asyncio
from transformers import NllbTokenizer

# ===== config =====

# for development purposes, all languages will be evaluated on the fast models
# and only a sample of languages will be evaluated on all models
models = [
    "openai/gpt-4o-mini",  # 0.6$/M tokens
    # "anthropic/claude-3.5-haiku", # 4$/M tokens -> too expensive for dev
    "meta-llama/llama-3.3-70b-instruct",  # 0.3$/M tokens
    "mistralai/mistral-small-24b-instruct-2501",  # 0.14$/M tokens
    "google/gemini-2.0-flash-001",  # 0.4$/M tokens
    # "qwen/qwen-turbo", # 0.2$/M tokens; recognizes "inappropriate content"
    # "deepseek/deepseek-chat",  # 0.9$/M tokens
    "microsoft/phi-4",  # 0.07$/M tokens
]
model_fast = "meta-llama/llama-3.3-70b-instruct"
transcription_models = [
    "elevenlabs/scribe_v1",
    "openai/whisper-large-v3-turbo",
    # "openai/whisper-small",
    # "facebook/seamless-m4t-v2-large",
]
transcription_model_fast = "openai/whisper-large-v3-turbo"
n_sentences = 30

# ===== setup =====

load_dotenv()
client = AsyncOpenAI(
    base_url="https://openrouter.ai/api/v1",
    api_key=getenv("OPENROUTER_API_KEY"),
)
cache = Memory(location=".cache", verbose=0).cache
bleu = evaluate.load("bleu")
chrf = evaluate.load("chrf")
wer = evaluate.load("wer")
tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
openrouter_rate_limit = AsyncLimiter(max_rate=20, time_period=1)
elevenlabs_rate_limit = AsyncLimiter(max_rate=2, time_period=1)
huggingface_rate_limit = AsyncLimiter(max_rate=5, time_period=1)

# ===== load metadata =====

# load general language data
languages = {
    lang: pop
    for lang, pop in LANGUAGE_SPEAKING_POPULATION.items()
    if not re.match(r".*-[A-Z]{2}$", lang)
}
languages = pd.DataFrame(list(languages.items()), columns=["bcp_47", "speakers"])
languages["language_name"] = languages["bcp_47"].apply(
    lambda x: Language.get(x).display_name()
)

# load script codes and names
scripts = pd.read_csv("data/ScriptCodes.csv").rename(
    columns={"Code": "iso15924", "English Name": "script_name"}
)


def population(bcp_47):
    items = {
        re.sub(r"^[a-z]+-", "", lang): pop
        for lang, pop in LANGUAGE_SPEAKING_POPULATION.items()
        if re.match(rf"^{bcp_47}-[A-Z]{{2}}$", lang)
    }
    return items


glottolog = Glottolog("data/glottolog-5.1")


@cache
def language_family(iso_639_3):
    languoid = glottolog.languoid(iso_639_3)
    return languoid.family.name if languoid else None


def script_name(iso15924):
    return scripts[scripts["iso15924"] == iso15924]["script_name"].values[0]


def aggregate_flores_paths(flores_paths):
    # takes a list of paths from the same language but different scripts
    # returns the one with the largest writing population
    if len(flores_paths) == 1:
        return flores_paths.values[0]
    populations = [
        Language.get(standardize_tag(x, macro=True)).writing_population()
        for x in flores_paths.values
    ]
    return flores_paths.values[populations.index(max(populations))]


# load benchmark languages and scripts
benchmark_dir = "data/floresp-v2.0-rc.3/dev"
benchmark_languages = pd.DataFrame(
    [f.split(".")[1] for f in os.listdir(benchmark_dir)],
    columns=["flores_path"],
)
benchmark_languages["bcp_47"] = benchmark_languages["flores_path"].apply(
    lambda x: standardize_tag(x, macro=True),
)
# ignore script (language is language)
benchmark_languages["bcp_47"] = benchmark_languages["bcp_47"].apply(
    lambda x: re.sub(r"-[A-Z][a-z]+$", "", x)
)
benchmark_languages = (
    benchmark_languages.groupby("bcp_47")
    .agg({"flores_path": aggregate_flores_paths})
    .reset_index()
)

fleurs_tags = "af_za,am_et,ar_eg,as_in,ast_es,az_az,be_by,bg_bg,bn_in,bs_ba,ca_es,ceb_ph,ckb_iq,cmn_hans_cn,cs_cz,cy_gb,da_dk,de_de,el_gr,en_us,es_419,et_ee,fa_ir,ff_sn,fi_fi,fil_ph,fr_fr,ga_ie,gl_es,gu_in,ha_ng,he_il,hi_in,hr_hr,hu_hu,hy_am,id_id,ig_ng,is_is,it_it,ja_jp,jv_id,ka_ge,kam_ke,kea_cv,kk_kz,km_kh,kn_in,ko_kr,ky_kg,lb_lu,lg_ug,ln_cd,lo_la,lt_lt,luo_ke,lv_lv,mi_nz,mk_mk,ml_in,mn_mn,mr_in,ms_my,mt_mt,my_mm,nb_no,ne_np,nl_nl,nso_za,ny_mw,oc_fr,om_et,or_in,pa_in,pl_pl,ps_af,pt_br,ro_ro,ru_ru,sd_in,sk_sk,sl_si,sn_zw,so_so,sr_rs,sv_se,sw_ke,ta_in,te_in,tg_tj,th_th,tr_tr,uk_ua,umb_ao,ur_pk,uz_uz,vi_vn,wo_sn,xh_za,yo_ng,yue_hant_hk,zu_za"
fleurs = pd.DataFrame(fleurs_tags.split(","), columns=["fleurs_tag"])
fleurs["bcp_47"] = fleurs["fleurs_tag"].apply(
    lambda x: standardize_tag(x.rsplit("_")[0], macro=True)
)


def download_file(url, path):
    response = requests.get(url)
    with open(path, "wb") as f:
        f.write(response.content)


def download_fleurs():
    # the huggingface loader does not allow loading only the dev set, so do it manually
    for language in languages[languages["in_benchmark"]].itertuples():
        tar_url = f"https://huggingface.co/datasets/google/fleurs/resolve/main/data/{language.fleurs_tag}/audio/dev.tar.gz"
        tar_path = Path(f"data/fleurs/{language.fleurs_tag}/audio/dev.tar.gz")
        if not tar_path.exists():
            print(f"Downloading {tar_url} to {tar_path}")
            tar_path.parent.mkdir(parents=True, exist_ok=True)
            download_file(tar_url, tar_path)
        with tarfile.open(tar_path, "r:gz") as tar:
            tar.extractall(path=f"data/fleurs/{language.fleurs_tag}/audio")
        tsv_url = f"https://huggingface.co/datasets/google/fleurs/resolve/main/data/{language.fleurs_tag}/dev.tsv"
        tsv_path = Path(f"data/fleurs/{language.fleurs_tag}/dev.tsv")
        if not tsv_path.exists():
            print(f"Downloading {tsv_url} to {tsv_path}")
            tsv_path.parent.mkdir(parents=True, exist_ok=True)
            download_file(tsv_url, tsv_path)


# load CommonVoice stats
@cache  # cache for 1 day
def get_commonvoice_stats(date: date):
    return get("https://commonvoice.mozilla.org/api/v1/stats/languages").json()


commonvoice_stats = pd.DataFrame(get_commonvoice_stats(date.today())).rename(
    columns={"locale": "commonvoice_locale", "validatedHours": "commonvoice_hours"}
)[["commonvoice_locale", "commonvoice_hours"]]
# ignore country (language is language) (in practive this is only relevant to zh-CN/zh-TW/zh-HK)
commonvoice_stats["bcp_47"] = commonvoice_stats["commonvoice_locale"].apply(
    lambda x: re.sub(r"-[A-Z]{2}$", "", x)
)
commonvoice_stats["bcp_47"] = commonvoice_stats["bcp_47"].apply(
    lambda x: standardize_tag(x, macro=True)
)  # this does not really seem to get macrolanguages though, e.g. not for Quechua
commonvoice_stats = (
    commonvoice_stats.groupby("bcp_47")
    .agg({"commonvoice_hours": "sum", "commonvoice_locale": "first"})
    .reset_index()
)

# merge data
languages = pd.merge(
    languages, benchmark_languages, on="bcp_47", how="left"
)  # "left" because keep it simple for now
languages = pd.merge(
    languages, fleurs, on="bcp_47", how="left"
)  # "left" because keep it simple for now
languages = pd.merge(
    languages, commonvoice_stats, on="bcp_47", how="left"
)  # "left" because keep it simple for now
languages["in_benchmark"] = languages["bcp_47"].isin(benchmark_languages["bcp_47"])

languages = languages.sort_values(by="speakers", ascending=False).iloc[:5]

# sample languages to translate to
target_languages = languages[languages["in_benchmark"]].sample(
    n=n_sentences, weights="speakers", replace=True, random_state=42
)
# sample languages to analyze with all models
detailed_languages = languages[languages["in_benchmark"]].iloc[:2]


# ===== define tasks and metrics =====


@cache
async def complete(**kwargs):
    async with openrouter_rate_limit:
        response = await client.chat.completions.create(**kwargs)
    if not response.choices:
        raise Exception(response)
    return response


def load_sentences(language):
    return open(f"{benchmark_dir}/dev.{language.flores_path}").readlines()


@cache
async def translate_and_evaluate(model, original_language_bcp_47, sentence_nr):
    original_language = languages[languages["bcp_47"] == original_language_bcp_47].iloc[
        0
    ]
    target_language = target_languages.iloc[sentence_nr]
    original_sentence = load_sentences(original_language)[sentence_nr].strip()
    target_sentence = load_sentences(target_language)[sentence_nr].strip()
    script = script_name(target_language.flores_path.split("_")[1])
    reply = await complete(
        model=model,
        messages=[
            {
                "role": "user",
                "content": f"Translate the following text to the {target_language.language_name} language; use the {script} script; reply only with the translation:\n\n{original_sentence}",
            }
        ],
        temperature=0,
        max_tokens=1024,
    )
    prediction = reply.choices[0].message.content.strip()
    bleu_score = bleu.compute(
        predictions=[prediction],
        references=[target_sentence],
        tokenizer=tokenizer.tokenize,
    )
    chrf_score = chrf.compute(predictions=[prediction], references=[target_sentence])
    return {
        "model": model,
        "bcp_47": original_language["bcp_47"],
        "mt_bleu": bleu_score["bleu"],
        "mt_chrf": chrf_score["score"],
        "sentence_nr": sentence_nr,
    }


metadata = pd.read_csv("data/floresp-v2.0-rc.3/metadata_dev.tsv", sep="\t")


@cache
async def classify_and_evaluate(model, language_bcp_47, nr):
    language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
    sentences = pd.DataFrame(load_sentences(language), columns=["text"])
    sentences = pd.concat([metadata, sentences], axis=1)
    sentences = sentences.dropna(subset=["topic"])
    sentences["topic"] = sentences["topic"].str.lower()
    paragraphs = (
        sentences.groupby("URL").agg({"text": " ".join, "topic": "first"}).reset_index()
    )
    top_topics = paragraphs.value_counts("topic").head(5).index
    paragraphs = paragraphs[paragraphs["topic"].isin(top_topics)]
    examples = pd.concat(
        [
            paragraphs[paragraphs["topic"] == t].sample(n=5, random_state=42)
            for t in top_topics
        ]
    ).sample(frac=1, random_state=42)
    test_paragraphs = paragraphs[~paragraphs["URL"].isin(examples["URL"])].sample(
        frac=1, random_state=42
    )
    test_paragraph = test_paragraphs.iloc[nr]

    def topic_to_number(topic):
        return top_topics.get_loc(topic)

    messages = []
    for example in examples.itertuples():
        messages += [
            {"role": "user", "content": example.text},
            {"role": "assistant", "content": str(topic_to_number(example.topic))},
        ]
    reply = await complete(
        model=model,
        messages=[
            *messages,
            {
                "role": "user",
                "content": test_paragraph.text,
            },
        ],
        temperature=0,
        max_tokens=5,
    )
    try:
        prediction = int(reply.choices[0].message.content.strip())
    except ValueError:
        prediction = -1
    return {
        "model": model,
        "bcp_47": language["bcp_47"],
        "true": topic_to_number(test_paragraph.topic),
        "pred": prediction,
        "sentence_nr": nr,
    }


def corrupt_sentence(sentence):
    # replace 5% of the sentence with <mask>
    mask_length = round(len(sentence) * 0.05)
    start = random.randint(0, len(sentence) - mask_length)
    end = start + mask_length
    return sentence[:start] + "<mask>" + sentence[end:]


@cache
async def mlm_and_evaluate(model, language_bcp_47, nr):
    language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
    sentences = pd.DataFrame(load_sentences(language), columns=["text"])
    sentences["corrupt_text"] = sentences["text"].apply(corrupt_sentence)
    examples = sentences.sample(n=10, random_state=42)
    test_sentences = sentences[~sentences["text"].isin(examples["text"])].sample(
        frac=1, random_state=42
    )
    test_sentence = test_sentences.iloc[nr]
    messages = []
    for example in examples.itertuples():
        messages += [
            {"role": "user", "content": example.corrupt_text},
            {"role": "assistant", "content": example.text},
        ]
    reply = await complete(
        model=model,
        messages=[
            *messages,
            {
                "role": "user",
                "content": test_sentence.corrupt_text,
            },
        ],
        temperature=0,
        max_tokens=1024,
    )
    prediction = reply.choices[0].message.content.strip()
    chrf_score = chrf.compute(predictions=[prediction], references=[test_sentence.text])
    return {
        "model": model,
        "bcp_47": language["bcp_47"],
        "mlm_chrf": chrf_score["score"],
        "sentence_nr": nr,
    }


@cache
async def transcribe_elevenlabs(path, model):
    modelname = model.split("/")[-1]
    client = AsyncElevenLabs(api_key=getenv("ELEVENLABS_API_KEY"))
    async with elevenlabs_rate_limit:
        with open(path, "rb") as file:
            response = await client.speech_to_text.convert(model_id=modelname, file=file)
    return response.text


@cache
async def transcribe_huggingface(path, model):
    client = AsyncInferenceClient(api_key=getenv("HUGGINGFACE_ACCESS_TOKEN"))
    async with huggingface_rate_limit:
        output = await client.automatic_speech_recognition(model=model, audio=path)
    return output.text


async def transcribe(path, model="elevenlabs/scribe_v1"):
    provider, modelname = model.split("/")
    match provider:
        case "elevenlabs":
            return await transcribe_elevenlabs(path, modelname)
        case "openai" | "facebook":
            return await transcribe_huggingface(path, model)
        case _:
            raise ValueError(f"Model {model} not supported")


async def transcribe_and_evaluate(model, language_bcp_47, nr):
    language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
    fleurs = pd.read_csv(f"data/fleurs/{language.fleurs_tag}/dev.tsv", sep="\t", names=["id", "fname", "raw_transcription", "transcription", "words", "id2", "gender"])
    item = fleurs.iloc[nr]
    path = f"data/fleurs/{language.fleurs_tag}/audio/dev/{item.fname}"
    pred = await transcribe(path, model=model)
    score = wer.compute(predictions=[pred], references=[item.transcription])    
    return {
        "model": model,
        "bcp_47": language["bcp_47"],
        "asr_wer": score,
        "sentence_nr": nr,
    }


# ===== run evaluation and aggregate results =====


def mean(lst):
    return sum(lst) / len(lst) if lst else 0


async def main():
    print("evaluate translation")
    translation_scores = [
        translate_and_evaluate(model, original_language.bcp_47, i)
        for i in range(n_sentences)
        for original_language in languages.itertuples()
        for model in models
        if original_language.in_benchmark
        and (
            model == model_fast
            or original_language.bcp_47 in detailed_languages.bcp_47.values
        )
    ]
    translation_scores = await tqdm_asyncio.gather(*translation_scores, miniters=1)
    print("evaluate classification")
    classification_scores = [
        classify_and_evaluate(model, language.bcp_47, i)
        for i in range(n_sentences)
        for language in languages.itertuples()
        for model in models
        if language.in_benchmark
        and (model == model_fast or language.bcp_47 in detailed_languages.bcp_47.values)
    ]
    classification_scores = await tqdm_asyncio.gather(
        *classification_scores, miniters=1
    )
    print("evaluate masked language modeling")
    mlm_scores = [
        mlm_and_evaluate(model, language.bcp_47, i)
        for i in range(n_sentences)
        for language in languages.itertuples()
        for model in models
        if language.in_benchmark
        and (model == model_fast or language.bcp_47 in detailed_languages.bcp_47.values)
    ]
    mlm_scores = await tqdm_asyncio.gather(*mlm_scores, miniters=1)
    print("evaluate transcription")
    transcription_scores = [
        transcribe_and_evaluate(model, language.bcp_47, i)
        for i in range(n_sentences)
        for language in languages.itertuples()
        for model in transcription_models
        if language.in_benchmark
        and (
            model == transcription_model_fast
            or language.bcp_47 in detailed_languages.bcp_47.values
        )
    ]
    transcription_scores = await tqdm_asyncio.gather(*transcription_scores, miniters=1)
    all_results = []
    for language in languages.itertuples():
        results = []
        for model in models + transcription_models:
            scores_mt = [
                score
                for score in translation_scores
                if score["bcp_47"] == language.bcp_47 and score["model"] == model
            ]
            scores_cls = [
                score
                for score in classification_scores
                if score["bcp_47"] == language.bcp_47 and score["model"] == model
            ]
            scores_mlm = [
                score
                for score in mlm_scores
                if score["bcp_47"] == language.bcp_47 and score["model"] == model
            ]
            scores_asr = [
                score
                for score in transcription_scores
                if score["bcp_47"] == language.bcp_47 and score["model"] == model
            ]
            mt_bleu = mean([s["mt_bleu"] for s in scores_mt])
            mt_chrf = mean([s["mt_chrf"] for s in scores_mt])
            cls_acc = mean([s["true"] == s["pred"] for s in scores_cls])
            mlm_chrf = mean([s["mlm_chrf"] for s in scores_mlm])
            asr_wer = mean([s["asr_wer"] for s in scores_asr])
            overall_score = (mt_chrf / 100 + cls_acc + mlm_chrf / 100) / 3
            if scores_mt or scores_asr:
                results.append(
                    {
                        "model": model,
                        "mt_bleu": mt_bleu,
                        "mt_chrf": mt_chrf,
                        "cls_acc": cls_acc,
                        "mlm_chrf": mlm_chrf,
                        "asr_wer": asr_wer,
                        "overall_score": overall_score,
                    }
                )
        if results:
            all_results.append(
                {
                    "language_name": language.language_name,
                    "bcp_47": language.bcp_47,
                    "speakers": language.speakers,
                    "scores": results,
                    "mt_bleu": mean([s["mt_bleu"] for s in results]),
                    "mt_chrf": mean([s["mt_chrf"] for s in results]),
                    "cls_acc": mean([s["cls_acc"] for s in results]),
                    "mlm_chrf": mean([s["mlm_chrf"] for s in results]),
                    "asr_wer": mean([s["asr_wer"] for s in results]),
                    "overall_score": mean([s["overall_score"] for s in results]),
                    "commonvoice_hours": language.commonvoice_hours
                    if not pd.isna(language.commonvoice_hours)
                    else None,
                    "commonvoice_locale": language.commonvoice_locale
                    if not pd.isna(language.commonvoice_locale)
                    else None,
                    "population": population(language.bcp_47),
                    "language_family": language_family(
                        language.flores_path.split("_")[0]
                    ),
                }
            )
    with open("results.json", "w") as f:
        json.dump(all_results, f, indent=2, ensure_ascii=False)


if __name__ == "__main__":
    download_fleurs()
    asyncio.run(main())