File size: 1,327 Bytes
679c32f
7c0fc12
 
 
679c32f
7c0fc12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
679c32f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch

# ๐Ÿ”น Load tokenizer and base model
base_model_id = "deepseek-ai/deepseek-coder-1.3b-base"
lora_model_id = "brijmansuriya/deepseek-lora"  # โœ… Your LoRA fine-tuned model repo

tokenizer = AutoTokenizer.from_pretrained(lora_model_id, trust_remote_code=True)
base_model = AutoModelForCausalLM.from_pretrained(
    base_model_id,
    device_map="auto",
    torch_dtype=torch.float16,
    trust_remote_code=True
)

# ๐Ÿ”น Load LoRA adapter
model = PeftModel.from_pretrained(base_model, lora_model_id)

# ๐Ÿ”น Define the function
def generate_code(prompt):
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    outputs = model.generate(
        **inputs,
        max_new_tokens=200,
        temperature=0.7,
        do_sample=True,
        top_p=0.95,
    )
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# ๐Ÿ”น Gradio UI
demo = gr.Interface(
    fn=generate_code,
    inputs=gr.Textbox(label="Enter your coding prompt"),
    outputs=gr.Textbox(label="Generated Code"),
    title="๐Ÿค– DeepSeek Code Generator (LoRA)",
    description="This app uses DeepSeek-Coder with Brijbhai's fine-tuned LoRA model to generate code from natural language prompts."
)

demo.launch()