Spaces:
Runtime error
Runtime error
Mansuriya Brij
commited on
Commit
Β·
7c0fc12
1
Parent(s):
679c32f
π‘ Add DeepSeek model + code generation
Browse files
app.py
CHANGED
@@ -1,7 +1,42 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from peft import PeftModel
|
4 |
+
import torch
|
5 |
|
6 |
+
# πΉ Load tokenizer and base model
|
7 |
+
base_model_id = "deepseek-ai/deepseek-coder-1.3b-base"
|
8 |
+
lora_model_id = "brijmansuriya/deepseek-lora" # β
Your LoRA fine-tuned model repo
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(lora_model_id, trust_remote_code=True)
|
11 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
base_model_id,
|
13 |
+
device_map="auto",
|
14 |
+
torch_dtype=torch.float16,
|
15 |
+
trust_remote_code=True
|
16 |
+
)
|
17 |
+
|
18 |
+
# πΉ Load LoRA adapter
|
19 |
+
model = PeftModel.from_pretrained(base_model, lora_model_id)
|
20 |
+
|
21 |
+
# πΉ Define the function
|
22 |
+
def generate_code(prompt):
|
23 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
24 |
+
outputs = model.generate(
|
25 |
+
**inputs,
|
26 |
+
max_new_tokens=200,
|
27 |
+
temperature=0.7,
|
28 |
+
do_sample=True,
|
29 |
+
top_p=0.95,
|
30 |
+
)
|
31 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
32 |
+
|
33 |
+
# πΉ Gradio UI
|
34 |
+
demo = gr.Interface(
|
35 |
+
fn=generate_code,
|
36 |
+
inputs=gr.Textbox(label="Enter your coding prompt"),
|
37 |
+
outputs=gr.Textbox(label="Generated Code"),
|
38 |
+
title="π€ DeepSeek Code Generator (LoRA)",
|
39 |
+
description="This app uses DeepSeek-Coder with Brijbhai's fine-tuned LoRA model to generate code from natural language prompts."
|
40 |
+
)
|
41 |
|
|
|
42 |
demo.launch()
|