File size: 12,091 Bytes
642914f
 
 
 
 
 
 
 
 
 
 
 
8d86c05
642914f
6d1ed2a
642914f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d1ed2a
 
642914f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34de76f
 
642914f
 
 
 
 
 
34de76f
 
642914f
 
 
 
 
 
 
 
 
 
 
 
 
34de76f
642914f
 
 
 
 
 
 
 
 
 
 
 
 
34de76f
642914f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d86c05
642914f
8d86c05
 
 
 
 
 
642914f
 
 
 
 
 
 
34de76f
642914f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34de76f
642914f
 
 
 
 
 
34de76f
642914f
 
 
 
 
 
 
 
 
 
 
 
 
 
34de76f
642914f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34de76f
642914f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34de76f
642914f
 
 
 
34de76f
642914f
 
 
 
 
6d1ed2a
642914f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d1ed2a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import base64
import os
import re
import sqlite3
import tempfile
import uuid
from io import BytesIO
from typing import Dict, List, Optional

import cv2
import numpy as np
from PIL import Image
from pillow_lut import load_cube_file
from fastapi import FastAPI, HTTPException, UploadFile, File
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from starlette.middleware.cors import CORSMiddleware

from ai import generate_cube

app = FastAPI(title="LUT Transformation API", version="1.0.0")

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

app.mount("/static", StaticFiles(directory="static"), name="static")


class LUTRequest(BaseModel):
    file_id: str
    user_prompt: str


class LUTTransformRequest(BaseModel):
    file_id: str
    user_prompt: str


class CubeFileResponse(BaseModel):
    file_id: str
    file_name: str


class CubeFileListItem(BaseModel):
    file_id: str
    file_name: str
    upload_date: str


DATABASE_PATH = "cube_files.db"


def init_database():
    """Initialize SQLite database and create tables"""
    conn = sqlite3.connect(DATABASE_PATH)
    cursor = conn.cursor()

    cursor.execute(
        """
        CREATE TABLE IF NOT EXISTS cube_files (
            id TEXT PRIMARY KEY,
            file_name TEXT NOT NULL,
            file_data BLOB NOT NULL,
            upload_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP
        )
    """
    )

    conn.commit()
    conn.close()


def save_cube_file_to_db(file_name: str, file_data: bytes) -> str:
    """Save cube file to database and return file ID"""
    file_id = str(uuid.uuid4())
    conn = sqlite3.connect(DATABASE_PATH)
    cursor = conn.cursor()

    cursor.execute(
        "INSERT INTO cube_files (id, file_name, file_data) VALUES (?, ?, ?)",
        (file_id, file_name, file_data),
    )

    conn.commit()
    conn.close()
    return file_id


def get_cube_file_from_db(file_id: str) -> Optional[tuple]:
    """Retrieve cube file from database by ID"""
    conn = sqlite3.connect(DATABASE_PATH)
    cursor = conn.cursor()

    cursor.execute(
        "SELECT file_name, file_data FROM cube_files WHERE id = ?", (file_id,)
    )

    result = cursor.fetchone()
    conn.close()
    return result


def list_cube_files_from_db() -> List[tuple]:
    """List all cube files from database"""
    conn = sqlite3.connect(DATABASE_PATH)
    cursor = conn.cursor()

    cursor.execute(
        "SELECT id, file_name, upload_date FROM cube_files ORDER BY upload_date DESC"
    )

    results = cursor.fetchall()
    conn.close()
    return results


class LUTTransformer:
    def __init__(self):
        self.title = ""
        self.size = 0
        self.lut_data = []

    def parse_cube_file(self, filepath: str) -> bool:
        """Parse .cube file and extract LUT data"""
        try:
            with open(filepath, "r") as file:
                lines = file.readlines()

            self.lut_data = []

            for line in lines:
                line = line.strip()

                if not line or line.startswith("#"):
                    continue

                if line.startswith("TITLE"):
                    self.title = line.split('"')[1] if '"' in line else line.split()[1]

                elif line.startswith("LUT_3D_SIZE"):
                    self.size = int(line.split()[1])

                else:
                    rgb_match = re.findall(r"[\d.]+", line)
                    if len(rgb_match) >= 3:
                        r, g, b = map(float, rgb_match[:3])
                        self.lut_data.append([r, g, b])

            return len(self.lut_data) > 0

        except Exception as e:
            print(f"Error parsing cube file: {e}")
            return False

    def apply_json_transformation(self, json_adjustments: Dict) -> bool:
        """Apply JSON color adjustments to LUT data"""
        try:
            lut_array = np.array(self.lut_data)

            for i, (r, g, b) in enumerate(lut_array):
                luminance = 0.299 * r + 0.587 * g + 0.114 * b

                if luminance < 0.33:
                    if "shadows" in json_adjustments:
                        adj = json_adjustments["shadows"]
                        lut_array[i] *= [
                            adj.get("r", 1.0),
                            adj.get("g", 1.0),
                            adj.get("b", 1.0),
                        ]

                elif luminance < 0.66:
                    if "midtones" in json_adjustments:
                        adj = json_adjustments["midtones"]
                        lut_array[i] *= [
                            adj.get("r", 1.0),
                            adj.get("g", 1.0),
                            adj.get("b", 1.0),
                        ]

                else:
                    if "highlights" in json_adjustments:
                        adj = json_adjustments["highlights"]
                        lut_array[i] *= [
                            adj.get("r", 1.0),
                            adj.get("g", 1.0),
                            adj.get("b", 1.0),
                        ]

            if "glob" in json_adjustments:
                global_adj = json_adjustments["glob"]
                lut_array *= [
                    global_adj.get("r", 1.0),
                    global_adj.get("g", 1.0),
                    global_adj.get("b", 1.0),
                ]

            lut_array = np.clip(lut_array, 0.0, 1.0)
            self.lut_data = lut_array.tolist()

            return True

        except Exception as e:
            print(f"Error applying transformation: {e}")
            return False

    def save_cube_file(self, output_path: str, new_title: str = None) -> bool:
        """Save modified LUT as .cube file"""
        try:
            with open(output_path, "w") as file:
                title = new_title if new_title else f"{self.title}_modified"
                file.write(f'TITLE "{title}"\n')
                file.write(f"LUT_3D_SIZE {self.size}\n\n")

                for r, g, b in self.lut_data:
                    file.write(f"{r:.6f} {g:.6f} {b:.6f}\n")

            return True

        except Exception as e:
            print(f"Error saving cube file: {e}")
            return False


def generate_new_cube(user_prompt: str) -> dict:
    """
    Placeholder for AI function that generates JSON adjustments based on user prompt.
    This function should be replaced with the actual AI implementation.
    """
    response = generate_cube(user_prompt)
    return response.model_dump(mode="json")


def apply_lut_to_image(image_path: str, lut_path: str) -> np.ndarray:
    """Apply LUT to image using pillow_lut"""
    try:
        lut = load_cube_file(lut_path)
        im = Image.open(image_path)
        result_image = im.filter(lut)
        
        result_array = np.array(result_image)
        return result_array

    except Exception as e:
        print(f"Error applying LUT to image: {e}")
        raise


def create_split_preview(
    original_lut_path: str, new_lut_path: str, sample_image_path: str
) -> str:
    """Create a split preview image and return as base64"""
    try:
        original_processed = apply_lut_to_image(sample_image_path, original_lut_path)
        new_processed = apply_lut_to_image(sample_image_path, new_lut_path)

        height, width = original_processed.shape[:2]
        split_image = np.zeros_like(original_processed)

        mid_point = width // 2
        split_image[:, :mid_point] = original_processed[:, :mid_point]
        split_image[:, mid_point:] = new_processed[:, mid_point:]

        cv2.line(split_image, (mid_point, 0), (mid_point, height), (255, 255, 255), 2)

        pil_image = Image.fromarray(split_image)

        buffer = BytesIO()
        pil_image.save(buffer, format="PNG")
        buffer.seek(0)

        base64_string = base64.b64encode(buffer.getvalue()).decode("utf-8")
        return base64_string

    except Exception as e:
        print(f"Error creating split preview: {e}")
        raise


@app.on_event("startup")
async def startup_event():
    init_database()


@app.get("/")
async def root():
    return {"message": "LUT Transformation API", "version": "1.0.0"}


@app.post("/upload-cube", response_model=CubeFileResponse)
async def upload_cube_file(file: UploadFile = File(...)):
    """
    Upload a .cube file and save it to the database
    """
    try:
        if not file.filename.endswith(".cube"):
            raise HTTPException(status_code=400, detail="Only .cube files are allowed")

        file_data = await file.read()

        file_id = save_cube_file_to_db(file.filename, file_data)

        return CubeFileResponse(file_id=file_id, file_name=file.filename)

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error uploading file: {str(e)}")


@app.get("/cube-files", response_model=List[CubeFileListItem])
async def list_cube_files():
    """
    List all uploaded cube files with their IDs and names
    """
    try:
        files = list_cube_files_from_db()
        return [
            CubeFileListItem(
                file_id=file_id, file_name=file_name, upload_date=upload_date
            )
            for file_id, file_name, upload_date in files
        ]
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error listing files: {str(e)}")


@app.post("/transform-lut")
async def transform_lut(request: LUTTransformRequest):
    """
    Transform a LUT based on file ID and user prompt, return split preview image
    """
    try:
        file_data = get_cube_file_from_db(request.file_id)
        if not file_data:
            raise HTTPException(status_code=404, detail="Cube file not found")

        file_name, cube_data = file_data

        with tempfile.NamedTemporaryFile(
            mode="wb", suffix=".cube", delete=False
        ) as temp_cube:
            temp_cube.write(cube_data)
            original_cube_path = temp_cube.name

        try:
            adjustments = generate_new_cube(request.user_prompt)
            transformer = LUTTransformer()
            if not transformer.parse_cube_file(original_cube_path):
                raise HTTPException(status_code=400, detail="Failed to parse cube file")

            if not transformer.apply_json_transformation(adjustments):
                raise HTTPException(
                    status_code=500, detail="Failed to apply transformations"
                )

            with tempfile.NamedTemporaryFile(
                mode="w", suffix=".cube", delete=False
            ) as temp_new_cube:
                new_cube_path = temp_new_cube.name

            if not transformer.save_cube_file(
                new_cube_path, f"{transformer.title}_AI_Modified"
            ):
                raise HTTPException(
                    status_code=500, detail="Failed to save new cube file"
                )

            sample_image_path = "static/sample.jpg"
            if not os.path.exists(sample_image_path):
                raise HTTPException(status_code=404, detail="Sample image not found")

            split_preview_base64 = create_split_preview(
                original_cube_path, new_cube_path, sample_image_path
            )

            return {
                "success": True,
                "message": "LUT transformation completed successfully",
                "file_name": file_name,
                "adjustments_applied": adjustments,
                "split_preview_base64": split_preview_base64,
            }

        finally:
            if os.path.exists(original_cube_path):
                os.unlink(original_cube_path)
            if "new_cube_path" in locals() and os.path.exists(new_cube_path):
                os.unlink(new_cube_path)

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")


@app.get("/health")
async def health_check():
    return {"status": "healthy", "sample_image_exists": os.path.exists("static/sample.jpg")}