Add Git LFS support for binary files
Browse files- .gitattributes +2 -0
- README.md +10 -128
- __pycache__/ai.cpython-312.pyc +0 -0
- __pycache__/main.cpython-312.pyc +0 -0
- main.py +13 -17
.gitattributes
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*.db filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,128 +1,10 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Setup
|
13 |
-
|
14 |
-
### 1. Install Dependencies
|
15 |
-
|
16 |
-
```bash
|
17 |
-
pip install -r requirements.txt
|
18 |
-
```
|
19 |
-
|
20 |
-
### 2. Run the Server
|
21 |
-
|
22 |
-
```bash
|
23 |
-
uvicorn main:app --reload
|
24 |
-
```
|
25 |
-
|
26 |
-
The API will be available at `http://localhost:8000`
|
27 |
-
|
28 |
-
### 3. API Documentation
|
29 |
-
|
30 |
-
Visit `http://localhost:8000/docs` for interactive API documentation.
|
31 |
-
|
32 |
-
## API Endpoints
|
33 |
-
|
34 |
-
### POST /transform-lut
|
35 |
-
|
36 |
-
Transform a LUT file using a text prompt.
|
37 |
-
|
38 |
-
**Request Body:**
|
39 |
-
```json
|
40 |
-
{
|
41 |
-
"cube_file_base64": "base64_encoded_cube_file",
|
42 |
-
"user_prompt": "Make this LUT more cinematic with cool shadows"
|
43 |
-
}
|
44 |
-
```
|
45 |
-
|
46 |
-
**Response:**
|
47 |
-
```json
|
48 |
-
{
|
49 |
-
"success": true,
|
50 |
-
"message": "LUT transformation completed successfully",
|
51 |
-
"adjustments_applied": {
|
52 |
-
"shadows": {"r": 0.9, "g": 1.0, "b": 1.2},
|
53 |
-
"midtones": {"r": 1.0, "g": 1.0, "b": 1.0},
|
54 |
-
"highlights": {"r": 1.1, "g": 1.05, "b": 0.95},
|
55 |
-
"global": {"r": 1.0, "g": 1.0, "b": 1.0}
|
56 |
-
},
|
57 |
-
"split_preview_base64": "base64_encoded_preview_image"
|
58 |
-
}
|
59 |
-
```
|
60 |
-
|
61 |
-
### GET /health
|
62 |
-
|
63 |
-
Check API health and sample image availability.
|
64 |
-
|
65 |
-
**Response:**
|
66 |
-
```json
|
67 |
-
{
|
68 |
-
"status": "healthy",
|
69 |
-
"sample_image_exists": true
|
70 |
-
}
|
71 |
-
```
|
72 |
-
|
73 |
-
## How It Works
|
74 |
-
|
75 |
-
1. **Upload**: Send a .cube file as base64 and a text prompt
|
76 |
-
2. **AI Processing**: The `generate_new_cube()` function processes the prompt and returns JSON adjustments
|
77 |
-
3. **LUT Transformation**: Apply the adjustments to the original LUT using the `LUTTransformer` class
|
78 |
-
4. **Image Processing**: Apply both original and modified LUTs to the sample image
|
79 |
-
5. **Split Preview**: Create a side-by-side comparison with a vertical divider line
|
80 |
-
6. **Response**: Return the preview image as base64
|
81 |
-
|
82 |
-
## LUT Adjustment Format
|
83 |
-
|
84 |
-
The AI generates adjustments in this JSON format:
|
85 |
-
|
86 |
-
```json
|
87 |
-
{
|
88 |
-
"shadows": {"r": 0.9, "g": 1.0, "b": 1.2},
|
89 |
-
"midtones": {"r": 1.0, "g": 1.0, "b": 1.0},
|
90 |
-
"highlights": {"r": 1.1, "g": 1.05, "b": 0.95},
|
91 |
-
"global": {"r": 1.0, "g": 1.0, "b": 1.0}
|
92 |
-
}
|
93 |
-
```
|
94 |
-
|
95 |
-
- **shadows**: Adjustments for darker regions (luminance < 0.33)
|
96 |
-
- **midtones**: Adjustments for medium regions (0.33 ≤ luminance < 0.66)
|
97 |
-
- **highlights**: Adjustments for brighter regions (luminance ≥ 0.66)
|
98 |
-
- **global**: Overall adjustments applied to all regions
|
99 |
-
|
100 |
-
## Testing
|
101 |
-
|
102 |
-
Use the provided `test_main.http` file to test the endpoints, or use curl:
|
103 |
-
|
104 |
-
```bash
|
105 |
-
curl -X POST "http://localhost:8000/transform-lut" \
|
106 |
-
-H "Content-Type: application/json" \
|
107 |
-
-d '{
|
108 |
-
"cube_file_base64": "VElUTEUgIlRlc3QgTFVUIgpMVVRfM0RfU0laRSAyCg...",
|
109 |
-
"user_prompt": "Make this LUT more cinematic with cool shadows"
|
110 |
-
}'
|
111 |
-
```
|
112 |
-
|
113 |
-
## Sample Image
|
114 |
-
|
115 |
-
The API uses `sample.jpg` as the standard test image for preview generation. Make sure this file exists in the project root.
|
116 |
-
|
117 |
-
## AI Integration
|
118 |
-
|
119 |
-
Replace the placeholder `generate_new_cube()` function with your actual AI implementation that takes a user prompt and returns color adjustment JSON.
|
120 |
-
|
121 |
-
## Error Handling
|
122 |
-
|
123 |
-
The API includes comprehensive error handling for:
|
124 |
-
- Invalid cube file formats
|
125 |
-
- Missing sample images
|
126 |
-
- Base64 decoding errors
|
127 |
-
- Image processing failures
|
128 |
-
- File system operations
|
|
|
1 |
+
---
|
2 |
+
title: Lut Ai
|
3 |
+
emoji: 🏃
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: gray
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
---
|
9 |
+
|
10 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__pycache__/ai.cpython-312.pyc
ADDED
Binary file (5.54 kB). View file
|
|
__pycache__/main.cpython-312.pyc
ADDED
Binary file (18.9 kB). View file
|
|
main.py
CHANGED
@@ -56,14 +56,16 @@ def init_database():
|
|
56 |
conn = sqlite3.connect(DATABASE_PATH)
|
57 |
cursor = conn.cursor()
|
58 |
|
59 |
-
cursor.execute(
|
|
|
60 |
CREATE TABLE IF NOT EXISTS cube_files (
|
61 |
id TEXT PRIMARY KEY,
|
62 |
file_name TEXT NOT NULL,
|
63 |
file_data BLOB NOT NULL,
|
64 |
upload_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
65 |
)
|
66 |
-
"""
|
|
|
67 |
|
68 |
conn.commit()
|
69 |
conn.close()
|
@@ -77,7 +79,7 @@ def save_cube_file_to_db(file_name: str, file_data: bytes) -> str:
|
|
77 |
|
78 |
cursor.execute(
|
79 |
"INSERT INTO cube_files (id, file_name, file_data) VALUES (?, ?, ?)",
|
80 |
-
(file_id, file_name, file_data)
|
81 |
)
|
82 |
|
83 |
conn.commit()
|
@@ -91,8 +93,7 @@ def get_cube_file_from_db(file_id: str) -> Optional[tuple]:
|
|
91 |
cursor = conn.cursor()
|
92 |
|
93 |
cursor.execute(
|
94 |
-
"SELECT file_name, file_data FROM cube_files WHERE id = ?",
|
95 |
-
(file_id,)
|
96 |
)
|
97 |
|
98 |
result = cursor.fetchone()
|
@@ -272,7 +273,7 @@ def apply_lut_to_image(image_path: str, lut_path: str) -> np.ndarray:
|
|
272 |
|
273 |
|
274 |
def create_split_preview(
|
275 |
-
|
276 |
) -> str:
|
277 |
"""Create a split preview image and return as base64"""
|
278 |
try:
|
@@ -318,17 +319,14 @@ async def upload_cube_file(file: UploadFile = File(...)):
|
|
318 |
Upload a .cube file and save it to the database
|
319 |
"""
|
320 |
try:
|
321 |
-
if not file.filename.endswith(
|
322 |
raise HTTPException(status_code=400, detail="Only .cube files are allowed")
|
323 |
|
324 |
file_data = await file.read()
|
325 |
|
326 |
file_id = save_cube_file_to_db(file.filename, file_data)
|
327 |
|
328 |
-
return CubeFileResponse(
|
329 |
-
file_id=file_id,
|
330 |
-
file_name=file.filename
|
331 |
-
)
|
332 |
|
333 |
except Exception as e:
|
334 |
raise HTTPException(status_code=500, detail=f"Error uploading file: {str(e)}")
|
@@ -343,9 +341,7 @@ async def list_cube_files():
|
|
343 |
files = list_cube_files_from_db()
|
344 |
return [
|
345 |
CubeFileListItem(
|
346 |
-
file_id=file_id,
|
347 |
-
file_name=file_name,
|
348 |
-
upload_date=upload_date
|
349 |
)
|
350 |
for file_id, file_name, upload_date in files
|
351 |
]
|
@@ -366,7 +362,7 @@ async def transform_lut(request: LUTTransformRequest):
|
|
366 |
file_name, cube_data = file_data
|
367 |
|
368 |
with tempfile.NamedTemporaryFile(
|
369 |
-
|
370 |
) as temp_cube:
|
371 |
temp_cube.write(cube_data)
|
372 |
original_cube_path = temp_cube.name
|
@@ -383,12 +379,12 @@ async def transform_lut(request: LUTTransformRequest):
|
|
383 |
)
|
384 |
|
385 |
with tempfile.NamedTemporaryFile(
|
386 |
-
|
387 |
) as temp_new_cube:
|
388 |
new_cube_path = temp_new_cube.name
|
389 |
|
390 |
if not transformer.save_cube_file(
|
391 |
-
|
392 |
):
|
393 |
raise HTTPException(
|
394 |
status_code=500, detail="Failed to save new cube file"
|
|
|
56 |
conn = sqlite3.connect(DATABASE_PATH)
|
57 |
cursor = conn.cursor()
|
58 |
|
59 |
+
cursor.execute(
|
60 |
+
"""
|
61 |
CREATE TABLE IF NOT EXISTS cube_files (
|
62 |
id TEXT PRIMARY KEY,
|
63 |
file_name TEXT NOT NULL,
|
64 |
file_data BLOB NOT NULL,
|
65 |
upload_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
66 |
)
|
67 |
+
"""
|
68 |
+
)
|
69 |
|
70 |
conn.commit()
|
71 |
conn.close()
|
|
|
79 |
|
80 |
cursor.execute(
|
81 |
"INSERT INTO cube_files (id, file_name, file_data) VALUES (?, ?, ?)",
|
82 |
+
(file_id, file_name, file_data),
|
83 |
)
|
84 |
|
85 |
conn.commit()
|
|
|
93 |
cursor = conn.cursor()
|
94 |
|
95 |
cursor.execute(
|
96 |
+
"SELECT file_name, file_data FROM cube_files WHERE id = ?", (file_id,)
|
|
|
97 |
)
|
98 |
|
99 |
result = cursor.fetchone()
|
|
|
273 |
|
274 |
|
275 |
def create_split_preview(
|
276 |
+
original_lut_path: str, new_lut_path: str, sample_image_path: str
|
277 |
) -> str:
|
278 |
"""Create a split preview image and return as base64"""
|
279 |
try:
|
|
|
319 |
Upload a .cube file and save it to the database
|
320 |
"""
|
321 |
try:
|
322 |
+
if not file.filename.endswith(".cube"):
|
323 |
raise HTTPException(status_code=400, detail="Only .cube files are allowed")
|
324 |
|
325 |
file_data = await file.read()
|
326 |
|
327 |
file_id = save_cube_file_to_db(file.filename, file_data)
|
328 |
|
329 |
+
return CubeFileResponse(file_id=file_id, file_name=file.filename)
|
|
|
|
|
|
|
330 |
|
331 |
except Exception as e:
|
332 |
raise HTTPException(status_code=500, detail=f"Error uploading file: {str(e)}")
|
|
|
341 |
files = list_cube_files_from_db()
|
342 |
return [
|
343 |
CubeFileListItem(
|
344 |
+
file_id=file_id, file_name=file_name, upload_date=upload_date
|
|
|
|
|
345 |
)
|
346 |
for file_id, file_name, upload_date in files
|
347 |
]
|
|
|
362 |
file_name, cube_data = file_data
|
363 |
|
364 |
with tempfile.NamedTemporaryFile(
|
365 |
+
mode="wb", suffix=".cube", delete=False
|
366 |
) as temp_cube:
|
367 |
temp_cube.write(cube_data)
|
368 |
original_cube_path = temp_cube.name
|
|
|
379 |
)
|
380 |
|
381 |
with tempfile.NamedTemporaryFile(
|
382 |
+
mode="w", suffix=".cube", delete=False
|
383 |
) as temp_new_cube:
|
384 |
new_cube_path = temp_new_cube.name
|
385 |
|
386 |
if not transformer.save_cube_file(
|
387 |
+
new_cube_path, f"{transformer.title}_AI_Modified"
|
388 |
):
|
389 |
raise HTTPException(
|
390 |
status_code=500, detail="Failed to save new cube file"
|