cartnet-demo / utils.py
Àlex Solé
fixed bug multiple structures csd
fa790e2
raw
history blame
12.5 kB
"""
Copyright (c) Facebook, Inc. and its affiliates.
This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""
import numpy as np
import torch
from torch_scatter import segment_coo, segment_csr
def radius_graph_pbc(
data,
radius,
max_num_neighbors_threshold,
enforce_max_neighbors_strictly: bool = False,
pbc=[True, True, True],
):
device = data.pos.device
batch_size = len(data.natoms)
if hasattr(data, "pbc"):
data.pbc = torch.atleast_2d(data.pbc)
for i in range(3):
if not torch.any(data.pbc[:, i]).item():
pbc[i] = False
elif torch.all(data.pbc[:, i]).item():
pbc[i] = True
else:
raise RuntimeError(
"Different structures in the batch have different PBC configurations. This is not currently supported."
)
# position of the atoms
atom_pos = data.pos
# Before computing the pairwise distances between atoms, first create a list of atom indices to compare for the entire batch
num_atoms_per_image = data.natoms
num_atoms_per_image_sqr = (num_atoms_per_image**2).long()
# index offset between images
index_offset = (
torch.cumsum(num_atoms_per_image, dim=0) - num_atoms_per_image
)
index_offset_expand = torch.repeat_interleave(
index_offset, num_atoms_per_image_sqr
)
num_atoms_per_image_expand = torch.repeat_interleave(
num_atoms_per_image, num_atoms_per_image_sqr
)
# Compute a tensor containing sequences of numbers that range from 0 to num_atoms_per_image_sqr for each image
# that is used to compute indices for the pairs of atoms. This is a very convoluted way to implement
# the following (but 10x faster since it removes the for loop)
# for batch_idx in range(batch_size):
# batch_count = torch.cat([batch_count, torch.arange(num_atoms_per_image_sqr[batch_idx], device=device)], dim=0)
num_atom_pairs = torch.sum(num_atoms_per_image_sqr)
index_sqr_offset = (
torch.cumsum(num_atoms_per_image_sqr, dim=0) - num_atoms_per_image_sqr
)
index_sqr_offset = torch.repeat_interleave(
index_sqr_offset, num_atoms_per_image_sqr
)
atom_count_sqr = (
torch.arange(num_atom_pairs, device=device) - index_sqr_offset
)
# Compute the indices for the pairs of atoms (using division and mod)
# If the systems get too large this apporach could run into numerical precision issues
index1 = (
torch.div(
atom_count_sqr, num_atoms_per_image_expand, rounding_mode="floor"
)
) + index_offset_expand
index2 = (
atom_count_sqr % num_atoms_per_image_expand
) + index_offset_expand
# Get the positions for each atom
pos1 = torch.index_select(atom_pos, 0, index1)
pos2 = torch.index_select(atom_pos, 0, index2)
# Calculate required number of unit cells in each direction.
# Smallest distance between planes separated by a1 is
# 1 / ||(a2 x a3) / V||_2, since a2 x a3 is the area of the plane.
# Note that the unit cell volume V = a1 * (a2 x a3) and that
# (a2 x a3) / V is also the reciprocal primitive vector
# (crystallographer's definition).
cross_a2a3 = torch.cross(data.cell[:, 1], data.cell[:, 2], dim=-1)
cell_vol = torch.sum(data.cell[:, 0] * cross_a2a3, dim=-1, keepdim=True)
if pbc[0]:
inv_min_dist_a1 = torch.norm(cross_a2a3 / cell_vol, p=2, dim=-1)
rep_a1 = torch.ceil(radius * inv_min_dist_a1)
else:
rep_a1 = data.cell.new_zeros(1)
if pbc[1]:
cross_a3a1 = torch.cross(data.cell[:, 2], data.cell[:, 0], dim=-1)
inv_min_dist_a2 = torch.norm(cross_a3a1 / cell_vol, p=2, dim=-1)
rep_a2 = torch.ceil(radius * inv_min_dist_a2)
else:
rep_a2 = data.cell.new_zeros(1)
if pbc[2]:
cross_a1a2 = torch.cross(data.cell[:, 0], data.cell[:, 1], dim=-1)
inv_min_dist_a3 = torch.norm(cross_a1a2 / cell_vol, p=2, dim=-1)
rep_a3 = torch.ceil(radius * inv_min_dist_a3)
else:
rep_a3 = data.cell.new_zeros(1)
# Take the max over all images for uniformity. This is essentially padding.
# Note that this can significantly increase the number of computed distances
# if the required repetitions are very different between images
# (which they usually are). Changing this to sparse (scatter) operations
# might be worth the effort if this function becomes a bottleneck.
max_rep = [rep_a1.max(), rep_a2.max(), rep_a3.max()]
# Tensor of unit cells
cells_per_dim = [
torch.arange(-rep, rep + 1, device=device, dtype=torch.float)
for rep in max_rep
]
unit_cell = torch.cartesian_prod(*cells_per_dim)
num_cells = len(unit_cell)
unit_cell_per_atom = unit_cell.view(1, num_cells, 3).repeat(
len(index2), 1, 1
)
unit_cell = torch.transpose(unit_cell, 0, 1)
unit_cell_batch = unit_cell.view(1, 3, num_cells).expand(
batch_size, -1, -1
)
# Compute the x, y, z positional offsets for each cell in each image
data_cell = torch.transpose(data.cell, 1, 2)
pbc_offsets = torch.bmm(data_cell, unit_cell_batch)
pbc_offsets_per_atom = torch.repeat_interleave(
pbc_offsets, num_atoms_per_image_sqr, dim=0
)
# Expand the positions and indices for the 9 cells
pos1 = pos1.view(-1, 3, 1).expand(-1, -1, num_cells)
pos2 = pos2.view(-1, 3, 1).expand(-1, -1, num_cells)
index1 = index1.view(-1, 1).repeat(1, num_cells).view(-1)
index2 = index2.view(-1, 1).repeat(1, num_cells).view(-1)
# Add the PBC offsets for the second atom
pos2 = pos2 + pbc_offsets_per_atom
# Compute the squared distance between atoms
direction = pos1 - pos2
atom_distance_sqr = torch.sum((direction) ** 2, dim=1)
direction = direction.permute(0, 2, 1).reshape(-1, 3)
atom_distance_sqr = atom_distance_sqr.view(-1)
# Remove pairs that are too far apart
mask_within_radius = torch.le(atom_distance_sqr, radius * radius)
# Remove pairs with the same atoms (distance = 0.0)
mask_not_same = torch.gt(atom_distance_sqr, 0.0001)
mask = torch.logical_and(mask_within_radius, mask_not_same)
index1 = torch.masked_select(index1, mask)
index2 = torch.masked_select(index2, mask)
unit_cell = torch.masked_select(
unit_cell_per_atom.view(-1, 3), mask.view(-1, 1).expand(-1, 3)
)
unit_cell = unit_cell.view(-1, 3)
atom_distance_sqr = torch.masked_select(atom_distance_sqr, mask)
direction = torch.masked_select(direction, mask.view(-1, 1).expand(-1, 3)).view(-1, 3)
if max_num_neighbors_threshold is not None:
mask_num_neighbors, num_neighbors_image = get_max_neighbors_mask(
natoms=data.natoms,
index=index1,
atom_distance=atom_distance_sqr,
max_num_neighbors_threshold=max_num_neighbors_threshold,
enforce_max_strictly=enforce_max_neighbors_strictly,
)
if not torch.all(mask_num_neighbors):
# Mask out the atoms to ensure each atom has at most max_num_neighbors_threshold neighbors
index1 = torch.masked_select(index1, mask_num_neighbors)
index2 = torch.masked_select(index2, mask_num_neighbors)
atom_distance_sqr = torch.masked_select(atom_distance_sqr, mask_num_neighbors)
direction = torch.masked_select(direction, mask_num_neighbors.view(-1, 1).expand(-1, 3)).view(-1, 3)
unit_cell = torch.masked_select(
unit_cell.view(-1, 3), mask_num_neighbors.view(-1, 1).expand(-1, 3)
)
unit_cell = unit_cell.view(-1, 3)
edge_index = torch.stack((index2, index1))
return edge_index, unit_cell, torch.sqrt(atom_distance_sqr), direction
def get_max_neighbors_mask(
natoms,
index,
atom_distance,
max_num_neighbors_threshold,
degeneracy_tolerance: float = 0.01,
enforce_max_strictly: bool = False,
):
"""
Give a mask that filters out edges so that each atom has at most
`max_num_neighbors_threshold` neighbors.
Assumes that `index` is sorted.
Enforcing the max strictly can force the arbitrary choice between
degenerate edges. This can lead to undesired behaviors; for
example, bulk formation energies which are not invariant to
unit cell choice.
A degeneracy tolerance can help prevent sudden changes in edge
existence from small changes in atom position, for example,
rounding errors, slab relaxation, temperature, etc.
"""
device = natoms.device
num_atoms = natoms.sum()
# Get number of neighbors
# segment_coo assumes sorted index
ones = index.new_ones(1).expand_as(index)
num_neighbors = segment_coo(ones, index, dim_size=num_atoms)
max_num_neighbors = num_neighbors.max()
num_neighbors_thresholded = num_neighbors.clamp(
max=max_num_neighbors_threshold
)
# Get number of (thresholded) neighbors per image
image_indptr = torch.zeros(
natoms.shape[0] + 1, device=device, dtype=torch.long
)
image_indptr[1:] = torch.cumsum(natoms, dim=0)
num_neighbors_image = segment_csr(num_neighbors_thresholded, image_indptr)
# If max_num_neighbors is below the threshold, return early
if (
max_num_neighbors <= max_num_neighbors_threshold
or max_num_neighbors_threshold <= 0
):
mask_num_neighbors = torch.tensor(
[True], dtype=bool, device=device
).expand_as(index)
return mask_num_neighbors, num_neighbors_image
# Create a tensor of size [num_atoms, max_num_neighbors] to sort the distances of the neighbors.
# Fill with infinity so we can easily remove unused distances later.
distance_sort = torch.full(
[num_atoms * max_num_neighbors], np.inf, device=device
)
# Create an index map to map distances from atom_distance to distance_sort
# index_sort_map assumes index to be sorted
index_neighbor_offset = torch.cumsum(num_neighbors, dim=0) - num_neighbors
index_neighbor_offset_expand = torch.repeat_interleave(
index_neighbor_offset, num_neighbors
)
index_sort_map = (
index * max_num_neighbors
+ torch.arange(len(index), device=device)
- index_neighbor_offset_expand
)
distance_sort.index_copy_(0, index_sort_map, atom_distance)
distance_sort = distance_sort.view(num_atoms, max_num_neighbors)
# Sort neighboring atoms based on distance
distance_sort, index_sort = torch.sort(distance_sort, dim=1)
# Select the max_num_neighbors_threshold neighbors that are closest
if enforce_max_strictly:
distance_sort = distance_sort[:, :max_num_neighbors_threshold]
index_sort = index_sort[:, :max_num_neighbors_threshold]
max_num_included = max_num_neighbors_threshold
else:
effective_cutoff = (
distance_sort[:, max_num_neighbors_threshold]
+ degeneracy_tolerance
)
is_included = torch.le(distance_sort.T, effective_cutoff)
# Set all undesired edges to infinite length to be removed later
distance_sort[~is_included.T] = np.inf
# Subselect tensors for efficiency
num_included_per_atom = torch.sum(is_included, dim=0)
max_num_included = torch.max(num_included_per_atom)
distance_sort = distance_sort[:, :max_num_included]
index_sort = index_sort[:, :max_num_included]
# Recompute the number of neighbors
num_neighbors_thresholded = num_neighbors.clamp(
max=num_included_per_atom
)
num_neighbors_image = segment_csr(
num_neighbors_thresholded, image_indptr
)
# Offset index_sort so that it indexes into index
index_sort = index_sort + index_neighbor_offset.view(-1, 1).expand(
-1, max_num_included
)
# Remove "unused pairs" with infinite distances
mask_finite = torch.isfinite(distance_sort)
index_sort = torch.masked_select(index_sort, mask_finite)
# At this point index_sort contains the index into index of the
# closest max_num_neighbors_threshold neighbors per atom
# Create a mask to remove all pairs not in index_sort
mask_num_neighbors = torch.zeros(len(index), device=device, dtype=bool)
mask_num_neighbors.index_fill_(0, index_sort, True)
return mask_num_neighbors, num_neighbors_image