File size: 12,538 Bytes
744c6a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa790e2
744c6a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
"""
Copyright (c) Facebook, Inc. and its affiliates.

This source code is licensed under the MIT license found in the
LICENSE file in the root directory of this source tree.
"""

import numpy as np
import torch
from torch_scatter import segment_coo, segment_csr




def radius_graph_pbc(
    data,
    radius,
    max_num_neighbors_threshold,
    enforce_max_neighbors_strictly: bool = False,
    pbc=[True, True, True],
):
    device = data.pos.device
    batch_size = len(data.natoms)

    if hasattr(data, "pbc"):
        data.pbc = torch.atleast_2d(data.pbc)
        for i in range(3):
            if not torch.any(data.pbc[:, i]).item():
                pbc[i] = False
            elif torch.all(data.pbc[:, i]).item():
                pbc[i] = True
            else:
                raise RuntimeError(
                    "Different structures in the batch have different PBC configurations. This is not currently supported."
                )

    # position of the atoms
    atom_pos = data.pos

    # Before computing the pairwise distances between atoms, first create a list of atom indices to compare for the entire batch
    num_atoms_per_image = data.natoms
    num_atoms_per_image_sqr = (num_atoms_per_image**2).long()

    # index offset between images
    index_offset = (
        torch.cumsum(num_atoms_per_image, dim=0) - num_atoms_per_image
    )

    index_offset_expand = torch.repeat_interleave(
        index_offset, num_atoms_per_image_sqr
    )
    num_atoms_per_image_expand = torch.repeat_interleave(
        num_atoms_per_image, num_atoms_per_image_sqr
    )

    # Compute a tensor containing sequences of numbers that range from 0 to num_atoms_per_image_sqr for each image
    # that is used to compute indices for the pairs of atoms. This is a very convoluted way to implement
    # the following (but 10x faster since it removes the for loop)
    # for batch_idx in range(batch_size):
    #    batch_count = torch.cat([batch_count, torch.arange(num_atoms_per_image_sqr[batch_idx], device=device)], dim=0)
    num_atom_pairs = torch.sum(num_atoms_per_image_sqr)
    index_sqr_offset = (
        torch.cumsum(num_atoms_per_image_sqr, dim=0) - num_atoms_per_image_sqr
    )
    index_sqr_offset = torch.repeat_interleave(
        index_sqr_offset, num_atoms_per_image_sqr
    )
    atom_count_sqr = (
        torch.arange(num_atom_pairs, device=device) - index_sqr_offset
    )

    # Compute the indices for the pairs of atoms (using division and mod)
    # If the systems get too large this apporach could run into numerical precision issues
    index1 = (
        torch.div(
            atom_count_sqr, num_atoms_per_image_expand, rounding_mode="floor"
        )
    ) + index_offset_expand
    index2 = (
        atom_count_sqr % num_atoms_per_image_expand
    ) + index_offset_expand
    # Get the positions for each atom
    pos1 = torch.index_select(atom_pos, 0, index1)
    pos2 = torch.index_select(atom_pos, 0, index2)

    # Calculate required number of unit cells in each direction.
    # Smallest distance between planes separated by a1 is
    # 1 / ||(a2 x a3) / V||_2, since a2 x a3 is the area of the plane.
    # Note that the unit cell volume V = a1 * (a2 x a3) and that
    # (a2 x a3) / V is also the reciprocal primitive vector
    # (crystallographer's definition).

    cross_a2a3 = torch.cross(data.cell[:, 1], data.cell[:, 2], dim=-1)
    cell_vol = torch.sum(data.cell[:, 0] * cross_a2a3, dim=-1, keepdim=True)

    if pbc[0]:
        inv_min_dist_a1 = torch.norm(cross_a2a3 / cell_vol, p=2, dim=-1)
        rep_a1 = torch.ceil(radius * inv_min_dist_a1)
    else:
        rep_a1 = data.cell.new_zeros(1)

    if pbc[1]:
        cross_a3a1 = torch.cross(data.cell[:, 2], data.cell[:, 0], dim=-1)
        inv_min_dist_a2 = torch.norm(cross_a3a1 / cell_vol, p=2, dim=-1)
        rep_a2 = torch.ceil(radius * inv_min_dist_a2)
    else:
        rep_a2 = data.cell.new_zeros(1)

    if pbc[2]:
        cross_a1a2 = torch.cross(data.cell[:, 0], data.cell[:, 1], dim=-1)
        inv_min_dist_a3 = torch.norm(cross_a1a2 / cell_vol, p=2, dim=-1)
        rep_a3 = torch.ceil(radius * inv_min_dist_a3)
    else:
        rep_a3 = data.cell.new_zeros(1)

    # Take the max over all images for uniformity. This is essentially padding.
    # Note that this can significantly increase the number of computed distances
    # if the required repetitions are very different between images
    # (which they usually are). Changing this to sparse (scatter) operations
    # might be worth the effort if this function becomes a bottleneck.
    max_rep = [rep_a1.max(), rep_a2.max(), rep_a3.max()]

    # Tensor of unit cells
    cells_per_dim = [
        torch.arange(-rep, rep + 1, device=device, dtype=torch.float)
        for rep in max_rep
    ]
    unit_cell = torch.cartesian_prod(*cells_per_dim)
    num_cells = len(unit_cell)
    unit_cell_per_atom = unit_cell.view(1, num_cells, 3).repeat(
        len(index2), 1, 1
    )
    unit_cell = torch.transpose(unit_cell, 0, 1)
    unit_cell_batch = unit_cell.view(1, 3, num_cells).expand(
        batch_size, -1, -1
    )

    # Compute the x, y, z positional offsets for each cell in each image
    data_cell = torch.transpose(data.cell, 1, 2)
    pbc_offsets = torch.bmm(data_cell, unit_cell_batch)
    pbc_offsets_per_atom = torch.repeat_interleave(
        pbc_offsets, num_atoms_per_image_sqr, dim=0
    )

    # Expand the positions and indices for the 9 cells
    pos1 = pos1.view(-1, 3, 1).expand(-1, -1, num_cells)
    pos2 = pos2.view(-1, 3, 1).expand(-1, -1, num_cells)
    index1 = index1.view(-1, 1).repeat(1, num_cells).view(-1)
    index2 = index2.view(-1, 1).repeat(1, num_cells).view(-1)
    # Add the PBC offsets for the second atom
    pos2 = pos2 + pbc_offsets_per_atom

    # Compute the squared distance between atoms
    direction = pos1 - pos2
    atom_distance_sqr = torch.sum((direction) ** 2, dim=1)
    direction = direction.permute(0, 2, 1).reshape(-1, 3)
    atom_distance_sqr = atom_distance_sqr.view(-1)

    # Remove pairs that are too far apart
    mask_within_radius = torch.le(atom_distance_sqr, radius * radius)
    # Remove pairs with the same atoms (distance = 0.0)
    mask_not_same = torch.gt(atom_distance_sqr, 0.0001)
    mask = torch.logical_and(mask_within_radius, mask_not_same)
    index1 = torch.masked_select(index1, mask)
    index2 = torch.masked_select(index2, mask)
    unit_cell = torch.masked_select(
        unit_cell_per_atom.view(-1, 3), mask.view(-1, 1).expand(-1, 3)
    )
    unit_cell = unit_cell.view(-1, 3)
    atom_distance_sqr = torch.masked_select(atom_distance_sqr, mask)
    direction = torch.masked_select(direction, mask.view(-1, 1).expand(-1, 3)).view(-1, 3)

    if max_num_neighbors_threshold is not None:
        mask_num_neighbors, num_neighbors_image = get_max_neighbors_mask(
            natoms=data.natoms,
            index=index1,
            atom_distance=atom_distance_sqr,
            max_num_neighbors_threshold=max_num_neighbors_threshold,
            enforce_max_strictly=enforce_max_neighbors_strictly,
        )

        if not torch.all(mask_num_neighbors):
            # Mask out the atoms to ensure each atom has at most max_num_neighbors_threshold neighbors
            index1 = torch.masked_select(index1, mask_num_neighbors)
            index2 = torch.masked_select(index2, mask_num_neighbors)
            atom_distance_sqr = torch.masked_select(atom_distance_sqr, mask_num_neighbors)
            direction = torch.masked_select(direction, mask_num_neighbors.view(-1, 1).expand(-1, 3)).view(-1, 3)
            unit_cell = torch.masked_select(
                unit_cell.view(-1, 3), mask_num_neighbors.view(-1, 1).expand(-1, 3)
            )
            unit_cell = unit_cell.view(-1, 3)
            
    edge_index = torch.stack((index2, index1))

    return edge_index, unit_cell, torch.sqrt(atom_distance_sqr), direction


def get_max_neighbors_mask(
    natoms,
    index,
    atom_distance,
    max_num_neighbors_threshold,
    degeneracy_tolerance: float = 0.01,
    enforce_max_strictly: bool = False,
):
    """
    Give a mask that filters out edges so that each atom has at most
    `max_num_neighbors_threshold` neighbors.
    Assumes that `index` is sorted.

    Enforcing the max strictly can force the arbitrary choice between
    degenerate edges. This can lead to undesired behaviors; for
    example, bulk formation energies which are not invariant to
    unit cell choice.

    A degeneracy tolerance can help prevent sudden changes in edge
    existence from small changes in atom position, for example,
    rounding errors, slab relaxation, temperature, etc.
    """

    device = natoms.device
    num_atoms = natoms.sum()

    # Get number of neighbors
    # segment_coo assumes sorted index
    ones = index.new_ones(1).expand_as(index)
    num_neighbors = segment_coo(ones, index, dim_size=num_atoms)
    max_num_neighbors = num_neighbors.max()
    num_neighbors_thresholded = num_neighbors.clamp(
        max=max_num_neighbors_threshold
    )

    # Get number of (thresholded) neighbors per image
    image_indptr = torch.zeros(
        natoms.shape[0] + 1, device=device, dtype=torch.long
    )
    image_indptr[1:] = torch.cumsum(natoms, dim=0)
    num_neighbors_image = segment_csr(num_neighbors_thresholded, image_indptr)

    # If max_num_neighbors is below the threshold, return early
    if (
        max_num_neighbors <= max_num_neighbors_threshold
        or max_num_neighbors_threshold <= 0
    ):
        mask_num_neighbors = torch.tensor(
            [True], dtype=bool, device=device
        ).expand_as(index)
        return mask_num_neighbors, num_neighbors_image

    # Create a tensor of size [num_atoms, max_num_neighbors] to sort the distances of the neighbors.
    # Fill with infinity so we can easily remove unused distances later.
    distance_sort = torch.full(
        [num_atoms * max_num_neighbors], np.inf, device=device
    )

    # Create an index map to map distances from atom_distance to distance_sort
    # index_sort_map assumes index to be sorted
    index_neighbor_offset = torch.cumsum(num_neighbors, dim=0) - num_neighbors
    index_neighbor_offset_expand = torch.repeat_interleave(
        index_neighbor_offset, num_neighbors
    )
    index_sort_map = (
        index * max_num_neighbors
        + torch.arange(len(index), device=device)
        - index_neighbor_offset_expand
    )

    distance_sort.index_copy_(0, index_sort_map, atom_distance)
    distance_sort = distance_sort.view(num_atoms, max_num_neighbors)

    # Sort neighboring atoms based on distance
    distance_sort, index_sort = torch.sort(distance_sort, dim=1)

    # Select the max_num_neighbors_threshold neighbors that are closest
    if enforce_max_strictly:
        distance_sort = distance_sort[:, :max_num_neighbors_threshold]
        index_sort = index_sort[:, :max_num_neighbors_threshold]
        max_num_included = max_num_neighbors_threshold

    else:
        effective_cutoff = (
            distance_sort[:, max_num_neighbors_threshold]
            + degeneracy_tolerance
        )
        is_included = torch.le(distance_sort.T, effective_cutoff)

        # Set all undesired edges to infinite length to be removed later
        distance_sort[~is_included.T] = np.inf

        # Subselect tensors for efficiency
        num_included_per_atom = torch.sum(is_included, dim=0)
        max_num_included = torch.max(num_included_per_atom)
        distance_sort = distance_sort[:, :max_num_included]
        index_sort = index_sort[:, :max_num_included]

        # Recompute the number of neighbors
        num_neighbors_thresholded = num_neighbors.clamp(
            max=num_included_per_atom
        )

        num_neighbors_image = segment_csr(
            num_neighbors_thresholded, image_indptr
        )

    # Offset index_sort so that it indexes into index
    index_sort = index_sort + index_neighbor_offset.view(-1, 1).expand(
        -1, max_num_included
    )
    # Remove "unused pairs" with infinite distances
    mask_finite = torch.isfinite(distance_sort)
    index_sort = torch.masked_select(index_sort, mask_finite)

    # At this point index_sort contains the index into index of the
    # closest max_num_neighbors_threshold neighbors per atom
    # Create a mask to remove all pairs not in index_sort
    mask_num_neighbors = torch.zeros(len(index), device=device, dtype=bool)
    mask_num_neighbors.index_fill_(0, index_sort, True)

    return mask_num_neighbors, num_neighbors_image