abdull4h's picture
Update app.py
6750126 verified
raw
history blame
11.2 kB
import streamlit as st
import os
import re
import torch
import numpy as np
from pathlib import Path
import PyPDF2
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.schema import Document
from langchain.embeddings import HuggingFaceEmbeddings
# Set page configuration
st.set_page_config(
page_title="Vision 2030 Virtual Assistant",
page_icon="🇸🇦",
layout="wide"
)
# App title and description
st.title("Vision 2030 Virtual Assistant")
st.markdown("Ask questions about Saudi Vision 2030 goals, projects, and progress in Arabic or English.")
# Function definitions
@st.cache_resource
def load_model_and_tokenizer():
"""Load the ALLaM-7B model and tokenizer with error handling"""
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
st.info(f"Loading model: {model_name} (this may take a few minutes)")
try:
# First attempt with AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
use_fast=False
)
# Load model with appropriate settings for ALLaM
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
st.success("Model loaded successfully!")
except Exception as e:
st.error(f"First loading attempt failed: {e}")
st.info("Trying alternative loading approach...")
# Try with specific tokenizer class if the first attempt fails
from transformers import LlamaTokenizer
tokenizer = LlamaTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
trust_remote_code=True,
device_map="auto",
)
st.success("Model loaded successfully with LlamaTokenizer!")
return model, tokenizer
def detect_language(text):
"""Detect if text is primarily Arabic or English"""
arabic_chars = re.findall(r'[\u0600-\u06FF]', text)
is_arabic = len(arabic_chars) > len(text) * 0.5
return "arabic" if is_arabic else "english"
def process_pdfs():
"""Process uploaded PDF documents"""
documents = []
if 'uploaded_pdfs' in st.session_state and st.session_state.uploaded_pdfs:
for pdf_file in st.session_state.uploaded_pdfs:
try:
# Save the uploaded file temporarily
pdf_path = f"temp_{pdf_file.name}"
with open(pdf_path, "wb") as f:
f.write(pdf_file.getbuffer())
# Extract text
text = ""
with open(pdf_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
for page in reader.pages:
text += page.extract_text() + "\n\n"
# Remove temporary file
os.remove(pdf_path)
if text.strip(): # If we got some text
doc = Document(
page_content=text,
metadata={"source": pdf_file.name, "filename": pdf_file.name}
)
documents.append(doc)
st.info(f"Successfully processed: {pdf_file.name}")
else:
st.warning(f"No text extracted from {pdf_file.name}")
except Exception as e:
st.error(f"Error processing {pdf_file.name}: {e}")
st.success(f"Processed {len(documents)} PDF documents")
return documents
def create_vector_store(documents):
"""Split documents into chunks and create a FAISS vector store"""
# Text splitter for breaking documents into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50,
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
)
# Split documents into chunks
chunks = []
for doc in documents:
doc_chunks = text_splitter.split_text(doc.page_content)
# Preserve metadata for each chunk
chunks.extend([
Document(page_content=chunk, metadata=doc.metadata)
for chunk in doc_chunks
])
st.info(f"Created {len(chunks)} chunks from {len(documents)} documents")
# Create a proper embedding function for LangChain
embedding_function = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)
# Create FAISS index
vector_store = FAISS.from_documents(
chunks,
embedding_function
)
return vector_store
def retrieve_context(query, vector_store, top_k=5):
"""Retrieve most relevant document chunks for a given query"""
# Search the vector store using similarity search
results = vector_store.similarity_search_with_score(query, k=top_k)
# Format the retrieved contexts
contexts = []
for doc, score in results:
contexts.append({
"content": doc.page_content,
"source": doc.metadata.get("source", "Unknown"),
"relevance_score": score
})
return contexts
def generate_response(query, contexts, model, tokenizer):
"""Generate a response using retrieved contexts with ALLaM-specific formatting"""
# Auto-detect language
language = detect_language(query)
# Format the prompt based on language
if language == "arabic":
instruction = (
"أنت مساعد افتراضي يهتم برؤية السعودية 2030. استخدم المعلومات التالية للإجابة على السؤال. "
"إذا لم تعرف الإجابة، فقل بأمانة إنك لا تعرف."
)
else: # english
instruction = (
"You are a virtual assistant for Saudi Vision 2030. Use the following information to answer the question. "
"If you don't know the answer, honestly say you don't know."
)
# Combine retrieved contexts
context_text = "\n\n".join([f"Document: {ctx['content']}" for ctx in contexts])
# Format the prompt for ALLaM instruction format
prompt = f"""<s>[INST] {instruction}
Context:
{context_text}
Question: {query} [/INST]</s>"""
try:
with st.spinner("Generating response..."):
# Generate response with appropriate parameters for ALLaM
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate with appropriate parameters
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True,
repetition_penalty=1.1
)
# Decode the response
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the answer part (after the instruction)
response = full_output.split("[/INST]")[-1].strip()
# If response is empty for some reason, return the full output
if not response:
response = full_output
return response, [ctx.get("source", "Unknown") for ctx in contexts]
except Exception as e:
st.error(f"Error during generation: {e}")
# Fallback response
return "I apologize, but I encountered an error while generating a response.", []
# Initialize the app state
if 'conversation_history' not in st.session_state:
st.session_state.conversation_history = []
if 'vector_store' not in st.session_state:
st.session_state.vector_store = None
if 'uploaded_pdfs' not in st.session_state:
st.session_state.uploaded_pdfs = None
# PDF upload section
st.header("1. Upload Vision 2030 Documents")
uploaded_files = st.file_uploader("Upload PDF documents about Vision 2030",
type=["pdf"],
accept_multiple_files=True,
help="Upload one or more PDF documents containing information about Vision 2030")
if uploaded_files:
st.session_state.uploaded_pdfs = uploaded_files
if st.button("Process PDFs"):
documents = process_pdfs()
if documents:
with st.spinner("Creating vector database..."):
st.session_state.vector_store = create_vector_store(documents)
st.success("Vector database created successfully!")
# Load the model (cached)
model, tokenizer = load_model_and_tokenizer()
# Chat interface
st.header("2. Chat with the Vision 2030 Assistant")
# Display conversation history
for message in st.session_state.conversation_history:
if message["role"] == "user":
st.markdown(f"**You:** {message['content']}")
else:
st.markdown(f"**Assistant:** {message['content']}")
if 'sources' in message and message['sources']:
st.markdown(f"*Sources: {', '.join([os.path.basename(src) for src in message['sources']])}*")
st.divider()
# Input for new question
user_input = st.text_input("Ask a question about Vision 2030 (in Arabic or English):", key="user_query")
# Examples
st.markdown("**Example questions:**")
examples_col1, examples_col2 = st.columns(2)
with examples_col1:
st.markdown("- What is Saudi Vision 2030?")
st.markdown("- What are the economic goals of Vision 2030?")
st.markdown("- How does Vision 2030 support women's empowerment?")
with examples_col2:
st.markdown("- ما هي رؤية السعودية 2030؟")
st.markdown("- ما هي الأهداف الاقتصادية لرؤية 2030؟")
st.markdown("- كيف تدعم رؤية 2030 تمكين المرأة السعودية؟")
# Process the user input
if user_input and st.session_state.vector_store:
# Add user message to history
st.session_state.conversation_history.append({"role": "user", "content": user_input})
# Get response
response, sources = generate_response(user_input, retrieve_context(user_input, st.session_state.vector_store), model, tokenizer)
# Add assistant message to history
st.session_state.conversation_history.append({"role": "assistant", "content": response, "sources": sources})
# Rerun to update the UI
st.experimental_rerun()
elif user_input and not st.session_state.vector_store:
st.warning("Please upload and process Vision 2030 PDF documents first")
# Reset conversation button
if st.button("Reset Conversation") and len(st.session_state.conversation_history) > 0:
st.session_state.conversation_history = []
st.experimental_rerun()