abdull4h's picture
Update app.py
84f8d41 verified
raw
history blame
31.8 kB
import os
import re
import json
import torch
import numpy as np
import pandas as pd
from tqdm import tqdm
from pathlib import Path
import spaces
# PDF processing
import PyPDF2
# LLM and embeddings
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
# RAG components
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.schema import Document
from langchain.embeddings import HuggingFaceEmbeddings
# Arabic text processing
import arabic_reshaper
from bidi.algorithm import get_display
# Evaluation
from rouge_score import rouge_scorer
import sacrebleu
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
import matplotlib.pyplot as plt
import seaborn as sns
from collections import defaultdict
# Gradio for the interface
import gradio as gr
# Helper functions
def safe_tokenize(text):
"""Pure regex tokenizer with no NLTK dependency"""
if not text:
return []
# Replace punctuation with spaces around them
text = re.sub(r'([.,!?;:()\[\]{}"\'/\\])', r' \1 ', text)
# Split on whitespace and filter empty strings
return [token for token in re.split(r'\s+', text.lower()) if token]
def detect_language(text):
"""Detect if text is primarily Arabic or English"""
# Simple heuristic: count Arabic characters
arabic_chars = re.findall(r'[\u0600-\u06FF]', text)
is_arabic = len(arabic_chars) > len(text) * 0.5
return "arabic" if is_arabic else "english"
# Evaluation metrics
def calculate_bleu(prediction, reference):
"""Calculate BLEU score without any NLTK dependency"""
# Tokenize texts using our own tokenizer
pred_tokens = safe_tokenize(prediction.lower())
ref_tokens = [safe_tokenize(reference.lower())]
# If either is empty, return 0
if not pred_tokens or not ref_tokens[0]:
return {"bleu_1": 0, "bleu_2": 0, "bleu_4": 0}
# Get n-grams function
def get_ngrams(tokens, n):
return [tuple(tokens[i:i+n]) for i in range(len(tokens) - n + 1)]
# Calculate precision for each n-gram level
precisions = []
for n in range(1, 5): # 1-gram to 4-gram
if len(pred_tokens) < n:
precisions.append(0)
continue
pred_ngrams = get_ngrams(pred_tokens, n)
ref_ngrams = get_ngrams(ref_tokens[0], n)
# Count matches
matches = sum(1 for ng in pred_ngrams if ng in ref_ngrams)
# Calculate precision
if pred_ngrams:
precisions.append(matches / len(pred_ngrams))
else:
precisions.append(0)
# Return BLEU scores
return {
"bleu_1": precisions[0],
"bleu_2": (precisions[0] * precisions[1]) ** 0.5 if len(precisions) > 1 else 0,
"bleu_4": (precisions[0] * precisions[1] * precisions[2] * precisions[3]) ** 0.25 if len(precisions) > 3 else 0
}
def calculate_meteor(prediction, reference):
"""Simple word overlap metric as METEOR alternative"""
# Tokenize with our custom tokenizer
pred_tokens = set(safe_tokenize(prediction.lower()))
ref_tokens = set(safe_tokenize(reference.lower()))
# Calculate Jaccard similarity as METEOR alternative
if not pred_tokens or not ref_tokens:
return 0
intersection = len(pred_tokens.intersection(ref_tokens))
union = len(pred_tokens.union(ref_tokens))
return intersection / union if union > 0 else 0
def calculate_f1_precision_recall(prediction, reference):
"""Calculate word-level F1, precision, and recall with custom tokenizer"""
# Tokenize with our custom tokenizer
pred_tokens = set(safe_tokenize(prediction.lower()))
ref_tokens = set(safe_tokenize(reference.lower()))
# Calculate overlap
common = pred_tokens.intersection(ref_tokens)
# Calculate precision, recall, F1
precision = len(common) / len(pred_tokens) if pred_tokens else 0
recall = len(common) / len(ref_tokens) if ref_tokens else 0
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) else 0
return {'precision': precision, 'recall': recall, 'f1': f1}
def evaluate_retrieval_quality(contexts, query, language):
"""Evaluate the quality of retrieved contexts"""
# This is a placeholder function
return {
'language_match_ratio': 1.0,
'source_diversity': len(set([ctx.get('source', '') for ctx in contexts])) / max(1, len(contexts)),
'mrr': 1.0
}
# PDF Processing and Vector Store
def simple_process_pdfs(pdf_paths):
"""Process PDF documents and return document objects"""
documents = []
print(f"Processing PDFs: {pdf_paths}")
for pdf_path in pdf_paths:
try:
if not os.path.exists(pdf_path):
print(f"Warning: {pdf_path} does not exist")
continue
print(f"Processing {pdf_path}...")
text = ""
with open(pdf_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
for page in reader.pages:
page_text = page.extract_text()
if page_text: # If we got text from this page
text += page_text + "\n\n"
if text.strip(): # If we got some text
doc = Document(
page_content=text,
metadata={"source": pdf_path, "filename": os.path.basename(pdf_path)}
)
documents.append(doc)
print(f"Successfully processed: {pdf_path}")
else:
print(f"Warning: No text extracted from {pdf_path}")
except Exception as e:
print(f"Error processing {pdf_path}: {e}")
import traceback
traceback.print_exc()
print(f"Processed {len(documents)} PDF documents")
return documents
def create_vector_store(documents):
"""Split documents into chunks and create a FAISS vector store"""
# Text splitter for breaking documents into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50,
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
)
# Split documents into chunks
chunks = []
for doc in documents:
doc_chunks = text_splitter.split_text(doc.page_content)
# Preserve metadata for each chunk
chunks.extend([
Document(page_content=chunk, metadata=doc.metadata)
for chunk in doc_chunks
])
print(f"Created {len(chunks)} chunks from {len(documents)} documents")
# Create a proper embedding function for LangChain
embedding_function = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)
# Create FAISS index
vector_store = FAISS.from_documents(
chunks,
embedding_function
)
return vector_store
# Model Loading and RAG System - Improved to handle SentencePiece issues
@spaces.GPU
def load_model_and_tokenizer():
"""Load the ALLaM-7B model and tokenizer with error handling"""
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
print(f"Loading model: {model_name}")
try:
# Check if sentencepiece is installed
try:
import sentencepiece
print("SentencePiece is installed")
except ImportError:
print("Warning: SentencePiece is not installed. Attempting to proceed with AutoTokenizer only.")
# First attempt with AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
use_fast=False
)
# Load model with appropriate settings for ALLaM
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
print("Model loaded successfully with AutoTokenizer!")
return model, tokenizer
except Exception as e:
print(f"First loading attempt failed: {e}")
# If SentencePiece error, provide helpful message
if "SentencePiece" in str(e):
raise ImportError(
"The model requires SentencePiece library which is missing. "
"Add 'sentencepiece>=0.1.95' to your requirements.txt file."
)
# Other general error
raise Exception(f"Failed to load model: {e}")
def retrieve_context(query, vector_store, top_k=5):
"""Retrieve most relevant document chunks for a given query"""
# Search the vector store using similarity search
results = vector_store.similarity_search_with_score(query, k=top_k)
# Format the retrieved contexts
contexts = []
for doc, score in results:
contexts.append({
"content": doc.page_content,
"source": doc.metadata.get("source", "Unknown"),
"relevance_score": score
})
return contexts
@spaces.GPU
def generate_response(query, contexts, model, tokenizer, language="auto"):
"""Generate a response using retrieved contexts with ALLaM-specific formatting"""
# Auto-detect language if not specified
if language == "auto":
language = detect_language(query)
# Format the prompt based on language
if language == "arabic":
instruction = (
"أنت مساعد افتراضي يهتم برؤية السعودية 2030. استخدم المعلومات التالية للإجابة على السؤال. "
"إذا لم تعرف الإجابة، فقل بأمانة إنك لا تعرف."
)
else: # english
instruction = (
"You are a virtual assistant for Saudi Vision 2030. Use the following information to answer the question. "
"If you don't know the answer, honestly say you don't know."
)
# Combine retrieved contexts
context_text = "\n\n".join([f"Document: {ctx['content']}" for ctx in contexts])
# Format the prompt for ALLaM instruction format
prompt = f"""<s>[INST] {instruction}
Context:
{context_text}
Question: {query} [/INST]</s>"""
try:
# Generate response with appropriate parameters for ALLaM
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate with appropriate parameters
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True,
repetition_penalty=1.1
)
# Decode the response
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the answer part (after the instruction)
response = full_output.split("[/INST]")[-1].strip()
# If response is empty for some reason, return the full output
if not response:
response = full_output
return response
except Exception as e:
print(f"Error during generation: {e}")
# Fallback response
return "I apologize, but I encountered an error while generating a response."
# Assistant Class
class Vision2030Assistant:
def __init__(self, model, tokenizer, vector_store):
self.model = model
self.tokenizer = tokenizer
self.vector_store = vector_store
self.conversation_history = []
def answer(self, user_query):
"""Process a user query and return a response with sources"""
# Detect language
language = detect_language(user_query)
# Add user query to conversation history
self.conversation_history.append({"role": "user", "content": user_query})
# Get the full conversation context
conversation_context = "\n".join([
f"{'User' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
for msg in self.conversation_history[-6:] # Keep last 3 turns (6 messages)
])
# Enhance query with conversation context for better retrieval
enhanced_query = f"{conversation_context}\n{user_query}"
# Retrieve relevant contexts
contexts = retrieve_context(enhanced_query, self.vector_store, top_k=5)
# Generate response
response = generate_response(user_query, contexts, self.model, self.tokenizer, language)
# Add response to conversation history
self.conversation_history.append({"role": "assistant", "content": response})
# Also return sources for transparency
sources = [ctx.get("source", "Unknown") for ctx in contexts]
unique_sources = list(set(sources))
return response, unique_sources, contexts
def reset_conversation(self):
"""Reset the conversation history"""
self.conversation_history = []
return "Conversation has been reset."
# Comprehensive evaluation dataset
comprehensive_evaluation_data = [
# === Overview ===
{
"query": "ما هي رؤية السعودية 2030؟",
"reference": "رؤية السعودية 2030 هي خطة استراتيجية تهدف إلى تنويع الاقتصاد السعودي وتقليل الاعتماد على النفط مع تطوير قطاعات مختلفة مثل الصحة والتعليم والسياحة.",
"category": "overview",
"language": "arabic"
},
{
"query": "What is Saudi Vision 2030?",
"reference": "Saudi Vision 2030 is a strategic framework aiming to diversify Saudi Arabia's economy and reduce dependence on oil, while developing sectors like health, education, and tourism.",
"category": "overview",
"language": "english"
},
# === Economic Goals ===
{
"query": "ما هي الأهداف الاقتصادية لرؤية 2030؟",
"reference": "تشمل الأهداف الاقتصادية زيادة مساهمة القطاع الخاص إلى 65%، وزيادة الصادرات غير النفطية إلى 50% من الناتج المحلي غير النفطي، وخفض البطالة إلى 7%.",
"category": "economic",
"language": "arabic"
},
{
"query": "What are the economic goals of Vision 2030?",
"reference": "The economic goals of Vision 2030 include increasing private sector contribution from 40% to 65% of GDP, raising non-oil exports from 16% to 50%, reducing unemployment from 11.6% to 7%.",
"category": "economic",
"language": "english"
},
# === Social Goals ===
{
"query": "كيف تعزز رؤية 2030 الإرث الثقافي السعودي؟",
"reference": "تتضمن رؤية 2030 الحفاظ على الهوية الوطنية، تسجيل مواقع أثرية في اليونسكو، وتعزيز الفعاليات الثقافية.",
"category": "social",
"language": "arabic"
},
{
"query": "How does Vision 2030 aim to improve quality of life?",
"reference": "Vision 2030 plans to enhance quality of life by expanding sports facilities, promoting cultural activities, and boosting tourism and entertainment sectors.",
"category": "social",
"language": "english"
}
]
# Gradio Interface
def initialize_system():
"""Initialize the Vision 2030 Assistant system"""
# Define paths for PDF files in the root directory
pdf_files = ["saudi_vision203.pdf", "saudi_vision2030_ar.pdf"]
# Print available files for debugging
print("Files in current directory:", os.listdir("."))
# Process PDFs and create vector store
vector_store_dir = "vector_stores"
os.makedirs(vector_store_dir, exist_ok=True)
if os.path.exists(os.path.join(vector_store_dir, "index.faiss")):
print("Loading existing vector store...")
embedding_function = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)
vector_store = FAISS.load_local(vector_store_dir, embedding_function)
else:
print("Creating new vector store...")
documents = simple_process_pdfs(pdf_files)
if not documents:
raise ValueError("No documents were processed successfully. Cannot continue.")
vector_store = create_vector_store(documents)
vector_store.save_local(vector_store_dir)
# Load model and tokenizer
model, tokenizer = load_model_and_tokenizer()
# Initialize assistant
assistant = Vision2030Assistant(model, tokenizer, vector_store)
return assistant
def evaluate_response(query, response, reference):
"""Evaluate a single response against a reference"""
# Calculate metrics
rouge = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)
rouge_scores = rouge.score(response, reference)
bleu_scores = calculate_bleu(response, reference)
meteor = calculate_meteor(response, reference)
word_metrics = calculate_f1_precision_recall(response, reference)
# Format results
evaluation_results = {
"ROUGE-1": f"{rouge_scores['rouge1'].fmeasure:.4f}",
"ROUGE-2": f"{rouge_scores['rouge2'].fmeasure:.4f}",
"ROUGE-L": f"{rouge_scores['rougeL'].fmeasure:.4f}",
"BLEU-1": f"{bleu_scores['bleu_1']:.4f}",
"BLEU-4": f"{bleu_scores['bleu_4']:.4f}",
"METEOR": f"{meteor:.4f}",
"Word Precision": f"{word_metrics['precision']:.4f}",
"Word Recall": f"{word_metrics['recall']:.4f}",
"Word F1": f"{word_metrics['f1']:.4f}"
}
return evaluation_results
@spaces.GPU
def run_conversation(assistant, query):
"""Run a query through the assistant and return the response"""
response, sources, contexts = assistant.answer(query)
return response, sources, contexts
@spaces.GPU
def run_evaluation_on_sample(assistant, sample_index=0):
"""Run evaluation on a selected sample from the evaluation dataset"""
if sample_index < 0 or sample_index >= len(comprehensive_evaluation_data):
return "Invalid sample index", "", "", {}
# Get the sample
sample = comprehensive_evaluation_data[sample_index]
query = sample["query"]
reference = sample["reference"]
category = sample["category"]
language = sample["language"]
# Reset conversation and get response
assistant.reset_conversation()
response, sources, contexts = assistant.answer(query)
# Evaluate response
evaluation_results = evaluate_response(query, response, reference)
return query, response, reference, evaluation_results, sources, category, language
def qualitative_evaluation_interface(assistant=None):
"""Create a Gradio interface for qualitative evaluation"""
# If assistant is None, create a simplified interface
if assistant is None:
with gr.Blocks(title="Vision 2030 Assistant - Initialization Error") as interface:
gr.Markdown("# Vision 2030 Assistant - Initialization Error")
gr.Markdown("There was an error initializing the assistant. Please check the logs for details.")
gr.Textbox(label="Status", value="System initialization failed")
return interface
sample_options = [f"{i+1}. {item['query'][:50]}..." for i, item in enumerate(comprehensive_evaluation_data)]
with gr.Blocks(title="Vision 2030 Assistant - Qualitative Evaluation") as interface:
gr.Markdown("# Vision 2030 Assistant - Qualitative Evaluation")
gr.Markdown("This interface allows you to evaluate the Vision 2030 Assistant on predefined samples or your own queries.")
with gr.Tab("Sample Evaluation"):
gr.Markdown("### Evaluate the assistant on predefined samples")
sample_dropdown = gr.Dropdown(
choices=sample_options,
label="Select a sample query",
value=sample_options[0] if sample_options else None
)
eval_button = gr.Button("Evaluate Sample")
with gr.Row():
with gr.Column():
sample_query = gr.Textbox(label="Query")
sample_category = gr.Textbox(label="Category")
sample_language = gr.Textbox(label="Language")
with gr.Column():
sample_response = gr.Textbox(label="Assistant Response")
sample_reference = gr.Textbox(label="Reference Answer")
sample_sources = gr.Textbox(label="Sources Used")
with gr.Row():
metrics_display = gr.JSON(label="Evaluation Metrics")
with gr.Tab("Custom Evaluation"):
gr.Markdown("### Evaluate the assistant on your own query")
custom_query = gr.Textbox(
lines=3,
placeholder="Enter your question about Saudi Vision 2030...",
label="Your Query"
)
custom_reference = gr.Textbox(
lines=3,
placeholder="Enter a reference answer (optional)...",
label="Reference Answer (Optional)"
)
custom_eval_button = gr.Button("Get Response and Evaluate")
custom_response = gr.Textbox(label="Assistant Response")
custom_sources = gr.Textbox(label="Sources Used")
custom_metrics = gr.JSON(
label="Evaluation Metrics (if reference provided)",
visible=True
)
with gr.Tab("Conversation Mode"):
gr.Markdown("### Have a conversation with the Vision 2030 Assistant")
chatbot = gr.Chatbot(label="Conversation")
conv_input = gr.Textbox(
placeholder="Ask about Saudi Vision 2030...",
label="Your message"
)
with gr.Row():
conv_button = gr.Button("Send")
reset_button = gr.Button("Reset Conversation")
conv_sources = gr.Textbox(label="Sources Used")
# Sample evaluation event handlers
def handle_sample_selection(selection):
if not selection:
return "", "", "", "", "", "", ""
# Extract index from the selection string
try:
index = int(selection.split(".")[0]) - 1
query, response, reference, metrics, sources, category, language = run_evaluation_on_sample(assistant, index)
sources_str = ", ".join(sources)
return query, response, reference, metrics, sources_str, category, language
except Exception as e:
print(f"Error in handle_sample_selection: {e}")
import traceback
traceback.print_exc()
return f"Error processing selection: {e}", "", "", {}, "", "", ""
eval_button.click(
handle_sample_selection,
inputs=[sample_dropdown],
outputs=[sample_query, sample_response, sample_reference, metrics_display,
sample_sources, sample_category, sample_language]
)
sample_dropdown.change(
handle_sample_selection,
inputs=[sample_dropdown],
outputs=[sample_query, sample_response, sample_reference, metrics_display,
sample_sources, sample_category, sample_language]
)
# Custom evaluation event handlers
@spaces.GPU
def handle_custom_evaluation(query, reference):
if not query:
return "Please enter a query", "", {}
# Reset conversation to ensure clean state
assistant.reset_conversation()
# Get response
response, sources, _ = assistant.answer(query)
sources_str = ", ".join(sources)
# Evaluate if reference is provided
metrics = {}
if reference:
metrics = evaluate_response(query, response, reference)
return response, sources_str, metrics
custom_eval_button.click(
handle_custom_evaluation,
inputs=[custom_query, custom_reference],
outputs=[custom_response, custom_sources, custom_metrics]
)
# Conversation mode event handlers
@spaces.GPU
def handle_conversation(message, history):
if not message:
return history, "", ""
# Get response
response, sources, _ = assistant.answer(message)
sources_str = ", ".join(sources)
# Update history
history = history + [[message, response]]
return history, "", sources_str
def reset_conv():
result = assistant.reset_conversation()
return [], result, ""
conv_button.click(
handle_conversation,
inputs=[conv_input, chatbot],
outputs=[chatbot, conv_input, conv_sources]
)
reset_button.click(
reset_conv,
inputs=[],
outputs=[chatbot, conv_input, conv_sources]
)
return interface
# Main function to run in Hugging Face Space
def main():
# Start with a debugging report
print("=" * 50)
print("SYSTEM INITIALIZATION")
print("=" * 50)
print("Current directory:", os.getcwd())
print("Files in directory:", os.listdir("."))
print("=" * 50)
# Check for SentencePiece
try:
import sentencepiece
print("SentencePiece is installed: ✓")
except ImportError:
print("WARNING: SentencePiece is NOT installed! This will cause errors with the tokenizer.")
# Initialize the system with simplified error handling
try:
# First create a very simple Gradio interface to show we're starting
with gr.Blocks(title="Vision 2030 Assistant - Starting") as loading_interface:
gr.Markdown("# Vision 2030 Assistant")
gr.Markdown("System is initializing. This may take a few minutes...")
status = gr.Textbox(value="Loading resources...", label="Status")
with gr.Blocks(title="Vision 2030 Assistant - Model Loading") as model_interface:
gr.Markdown("# Vision 2030 Assistant - Loading Model")
gr.Markdown("The system is now loading the ALLaM-7B model. This may take several minutes.")
status = gr.Textbox(value="Loading model...", label="Status")
# Now try the actual initialization
try:
print("Starting system initialization...")
assistant = initialize_system()
print("Creating interface...")
interface = qualitative_evaluation_interface(assistant)
print("Launching interface...")
return interface
except ImportError as e:
print(f"Import error during initialization: {e}")
# Create a simple error interface specifically for SentencePiece errors
if "SentencePiece" in str(e):
with gr.Blocks(title="Vision 2030 Assistant - SentencePiece Error") as sp_error:
gr.Markdown("# Vision 2030 Assistant - SentencePiece Error")
gr.Markdown("The model requires the SentencePiece library which is missing.")
gr.Markdown("""
## How to Fix:
Add these lines to your `requirements.txt` file:
```
sentencepiece>=0.1.95
protobuf>=3.20.0
```
Then rebuild your Hugging Face Space.
""")
return sp_error
else:
# For other import errors
with gr.Blocks(title="Vision 2030 Assistant - Import Error") as import_error:
gr.Markdown("# Vision 2030 Assistant - Import Error")
gr.Markdown(f"An import error occurred: {str(e)}")
# Display possible solutions
gr.Markdown("""
## Possible solutions:
Check your `requirements.txt` file for missing dependencies.
""")
return import_error
except Exception as e:
print(f"Error during initialization: {e}")
import traceback
traceback.print_exc()
# Create a general error interface
with gr.Blocks(title="Vision 2030 Assistant - Error") as debug_interface:
gr.Markdown("# Vision 2030 Assistant - Initialization Error")
gr.Markdown("There was an error initializing the assistant.")
# Display error details
gr.Textbox(
value=f"Error: {str(e)}",
label="Error Details",
lines=5
)
# Show file system status
files_list = "\n".join(os.listdir("."))
gr.Textbox(
value=files_list,
label="Files in Directory",
lines=10
)
# Add a button to check PDFs
def check_pdfs():
result = []
for pdf_file in ["saudi_vision203.pdf", "saudi_vision2030_ar.pdf"]:
if os.path.exists(pdf_file):
size = os.path.getsize(pdf_file) / (1024 * 1024) # Size in MB
result.append(f"{pdf_file}: Found ({size:.2f} MB)")
else:
result.append(f"{pdf_file}: Not found")
return "\n".join(result)
check_btn = gr.Button("Check PDF Files")
pdf_status = gr.Textbox(label="PDF Status", lines=3)
check_btn.click(check_pdfs, inputs=[], outputs=[pdf_status])
return debug_interface
except Exception as e:
print(f"Critical error: {e}")
with gr.Blocks(title="Vision 2030 Assistant - Critical Error") as critical_error:
gr.Markdown("# Vision 2030 Assistant - Critical Error")
gr.Markdown(f"A critical error occurred: {str(e)}")
# Display stacktrace
import traceback
trace = traceback.format_exc()
gr.Textbox(
value=trace,
label="Error Traceback",
lines=15
)
return critical_error
if __name__ == "__main__":
demo = main()
demo.launch()