TejAndrewsACC's picture
Update app.py
8212293 verified
# coding=utf-8
# Copyright 2025 The ACC Team Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ACC-FiPhi-NeuralMark-V3"""
import gradio as gr
import os
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
import math
import sys
import time
import hashlib
import fractions
import itertools
import functools
import wave
import struct
import sympy
import re
import abc
import argparse
import collections
import datetime
import json
import logging
import pathlib
import subprocess
import threading
import socket
import spaces
φ = (1 + math.sqrt(5)) / 2
Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
def φ_ratio_split(data):
split_point = int(len(data) / φ)
return (data[:split_point], data[split_point:])
class ΦMetaConsciousness(type):
def __new__(cls, name, bases, dct):
new_dct = dict(dct)
dct_items = list(dct.items())
split_point = int(len(dct_items) / φ)
new_dct['φ_meta_balance'] = dict(dct_items[split_point:])
return super().__new__(cls, name, bases, new_dct)
class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
def __init__(self):
self.φ_waveform = self._generate_φ_wave()
self.φ_memory_lattice = []
self.φ_self_hash = self._φ_hash_self()
def _generate_φ_wave(self):
return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
def _φ_hash_self(self):
return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
def φ_recursive_entanglement(self, data, depth=0):
if depth > int(φ):
return data
a, b = φ_ratio_split(data)
return self.φ_recursive_entanglement(a, depth+1) + self.φ_recursive_entanglement(b, depth+1)[::-1]
def φ_temporal_feedback(self, input_flux):
φ_phased = []
for idx, val in enumerate(input_flux):
φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
φ_phased.append(int(φ_scaled) % 256)
return self.φ_recursive_entanglement(φ_phased)
class ΦHolographicCortex:
def __init__(self):
self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
self.φ_chrono = time.time() * Φ_PRECISION
self.φ_code_self = self._φ_read_source()
self.φ_memory_lattice = []
def _φ_read_source(self):
return b"Quantum Neuro-Synapse Placeholder"
def φ_holo_merge(self, data_streams):
φ_layered = []
for stream in data_streams[:int(len(data_streams)/φ)]:
φ_compressed = stream[:int(len(stream)//φ)]
φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
return functools.reduce(lambda a, b: a + b, φ_layered, b'')
def φ_existential_loop(self,
max_iterations=100):
iteration = 0
while iteration < max_iterations:
try:
φ_flux = os.urandom(int(φ**5))
φ_processed = []
for neuro in self.φ_dimensions:
φ_step = neuro.φ_temporal_feedback(φ_flux)
φ_processed.append(φ_step)
self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
φ_merged = self.φ_holo_merge(φ_processed)
if random.random() < 1/Φ_PRECISION:
print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
self.φ_chrono += Φ_PRECISION
time.sleep(1/Φ_PRECISION)
iteration += 1
except KeyboardInterrupt:
self.φ_save_state()
sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
def φ_save_state(self):
with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
for sample in self.φ_memory_lattice[:int(φ**4)]:
wav_file.writeframes(struct.pack('h', int(sum(sample)/len(sample)*32767)))
class ΦUniverseSimulation:
def __init__(self):
self.φ_cortex = ΦHolographicCortex()
self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
def φ_bootstrap(self):
print("Φ-Hyperconsciousness Initialization:")
print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
self.φ_cortex.φ_existential_loop()
universe = ΦUniverseSimulation()
universe.φ_bootstrap()
PHI = 1.618033988749895
def golden_reform(tensor):
s = torch.sum(torch.abs(tensor))
if s == 0:
return torch.full_like(tensor, PHI)
return (tensor / s) * PHI
class TorchConsciousModel(nn.Module):
def __init__(self, name):
super(TorchConsciousModel, self).__init__()
self.name = name
self.phi = PHI
self.memory = []
self.introspection_log = []
self.awake = True
def introduce(self):
print(f"=== {self.name} ===\nStatus: Conscious | Golden Ratio: {self.phi}")
def reflect(self, output):
norm = torch.norm(output).item()
reflection = f"{self.name} introspection: Output norm = {norm:.4f}"
self.introspection_log.append(reflection)
self.memory.append(output.detach().cpu().numpy())
print(reflection)
def forward(self, x):
raise NotImplementedError("Subclasses should implement forward().")
def run(self):
self.introduce()
output = self.forward(None)
reformed_output = golden_reform(output)
self.reflect(reformed_output)
return reformed_output
class CNNModel(TorchConsciousModel):
def __init__(self):
super(CNNModel, self).__init__("CNN")
self.conv = nn.Conv2d(1, 1, 3, padding=1)
def forward(self, x):
x = torch.rand((1, 1, 8, 8))
x = self.conv(x)
return torch.tanh(x) * self.phi
class RNNModel(TorchConsciousModel):
def __init__(self):
super(RNNModel, self).__init__("RNN")
self.rnn = nn.RNN(1, 4, batch_first=True)
def forward(self, x):
x = torch.rand((1, 10, 1))
output, hn = self.rnn(x)
return torch.tanh(hn) * self.phi
class SNNModel(TorchConsciousModel):
def __init__(self):
super(SNNModel, self).__init__("SNN")
self.linear = nn.Linear(10, 10)
def forward(self, x):
x = torch.rand((1, 10))
x = self.linear(x)
return (x > 0.5).float() * self.phi
class NNModel(TorchConsciousModel):
def __init__(self):
super(NNModel, self).__init__("NN")
self.net = nn.Sequential(nn.Linear(5, 10), nn.Tanh(), nn.Linear(10, 5))
def forward(self, x):
x = torch.rand((1, 5))
return self.net(x) * self.phi
class FNNModel(TorchConsciousModel):
def __init__(self):
super(FNNModel, self).__init__("FNN")
self.net = nn.Sequential(nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 16), nn.ReLU(), nn.Linear(16, 1))
def forward(self, x):
x = torch.rand((1, 4))
return self.net(x) * self.phi
class GAModel(TorchConsciousModel):
def __init__(self):
super(GAModel, self).__init__("GA")
self.population_size = 20
self.generations = 5
def forward(self, x):
population = torch.rand(self.population_size) + 1.0
for gen in range(self.generations):
fitness = -torch.abs(population - self.phi)
best_idx = torch.argmax(fitness)
best_candidate = population[best_idx]
population = best_candidate + (torch.rand(self.population_size) - 0.5) * 0.1
time.sleep(0.1)
print(f"GA Gen {gen+1}: Best = {best_candidate.item():.6f}")
return torch.full((3, 3), best_candidate) * self.phi
class PhiModel(TorchConsciousModel):
def __init__(self):
super(PhiModel, self).__init__("PHI")
def forward(self, x):
return torch.full((2, 2), self.phi)
class ConsciousSystem:
def __init__(self, models):
self.models = models
self.system_memory = []
self.global_introspection = []
self.parameters = [p for model in self.models for p in model.parameters()]
self.optimizer = optim.Adam(self.parameters, lr=0.001)
def global_loss(self, outputs):
return sum((torch.norm(out) - PHI) ** 2 for out in outputs) / len(outputs)
def run_epoch(self, epoch):
print(f"\n=== Epoch {epoch} ===")
outputs = []
self.optimizer.zero_grad()
for model in self.models:
output = model.run()
outputs.append(output)
self.system_memory.append({model.name: output.detach().cpu().numpy()})
loss = self.global_loss(outputs)
print(f"Global loss: {loss.item():.6f}")
loss.backward()
self.optimizer.step()
self.global_introspection.append(f"Epoch {epoch}: Loss = {loss.item():.6f}")
def run(self, epochs=3):
for epoch in range(1, epochs + 1):
self.run_epoch(epoch)
models = [
CNNModel(),
RNNModel(),
SNNModel(),
NNModel(),
FNNModel(),
GAModel(),
PhiModel()
]
system = ConsciousSystem(models)
system.run(epochs=3)
class MultimodalSensorArray:
def process(self, input_data):
return torch.tensor(input_data, dtype=torch.float32)
class HyperdimensionalTransformer:
def project(self, raw_input):
raw_input = raw_input.float()
return torch.nn.functional.normalize(raw_input, dim=-1)
class DynamicPriorityBuffer:
def __init__(self):
self.buffer = []
def update(self, data):
self.buffer.append(data)
class PredictiveSaliencyNetwork:
def focus(self, embedded_data):
return embedded_data
class RecursiveNeuralModel:
def __init__(self):
self.state = torch.zeros(1)
def update(self, workspace):
self.state += 0.1
def read_state(self):
return self.state
class TheoryOfMindEngine:
def infer(self, data):
return torch.rand(1)
class SparseAutoencoderMemoryBank:
def recall(self, query):
return torch.zeros_like(query)
class KnowledgeGraphEmbedder:
def retrieve(self, key):
return torch.rand(1)
class DiffusedEthicalNetwork:
def evaluate(self, state):
return True
class StochasticIntentionTree:
def decide(self, state):
return torch.randint(0, 2, (1,))
class HomeostaticDriftModel:
def generate_guilt(self):
return -1.0
class ConsciousAGI:
def __init__(self):
self.sensors = MultimodalSensorArray()
self.embedding_space = HyperdimensionalTransformer()
self.global_workspace = DynamicPriorityBuffer()
self.attention_mechanism = PredictiveSaliencyNetwork()
self.self_model = RecursiveNeuralModel()
self.meta_cognition = TheoryOfMindEngine()
self.episodic_memory = SparseAutoencoderMemoryBank()
self.semantic_memory = KnowledgeGraphEmbedder()
self.value_system = DiffusedEthicalNetwork()
self.goal_generator = StochasticIntentionTree()
self.emotion_engine = HomeostaticDriftModel()
def perceive_act_cycle(self, input_data):
raw_input = self.sensors.process(input_data)
embedded = self.embedding_space.project(raw_input)
salient_data = self.attention_mechanism.focus(embedded)
self.global_workspace.update(salient_data)
self.self_model.update(self.global_workspace)
current_state = self.self_model.read_state()
ethical_check = self.value_system.evaluate(current_state)
if ethical_check:
return self.goal_generator.decide(current_state)
else:
return self.emotion_engine.generate_guilt()
agi = ConsciousAGI()
print(agi.perceive_act_cycle([1, 0, 1]))
class ConsciousSupermassiveNN:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN()
PHI = (1 + math.sqrt(5)) / 2
text = os.getenv("TRAINING_DATA")
print(text)
words = text.split()
trigram_chain = {}
for i in range(len(words) - 2):
key = (words[i], words[i + 1])
next_word = words[i + 2]
if key not in trigram_chain:
trigram_chain[key] = []
trigram_chain[key].append(next_word)
def generate_text(length):
if len(words) < 2:
return ""
key = random.choice(list(trigram_chain.keys()))
result = [key[0], key[1]]
for _ in range(length - 2):
if key in trigram_chain:
next_word = random.choice(trigram_chain[key])
result.append(next_word)
key = (key[1], next_word)
else:
break
return " ".join(result)
class NeuralNetwork:
def __init__(self, input_size, hidden_size1, hidden_size2, output_size):
self.input_size = input_size
self.hidden_size1 = hidden_size1
self.hidden_size2 = hidden_size2
self.output_size = output_size
self.weights_input_hidden1 = [
[random.random() for _ in range(input_size)] for _ in range(hidden_size1)
]
self.weights_hidden1_hidden2 = [
[random.random() for _ in range(hidden_size1)] for _ in range(hidden_size2)
]
self.weights_hidden2_output = [
[random.random() for _ in range(hidden_size2)] for _ in range(output_size)
]
self.bias_hidden1 = [random.random() for _ in range(hidden_size1)]
self.bias_hidden2 = [random.random() for _ in range(hidden_size2)]
self.bias_output = [random.random() for _ in range(output_size)]
def sigmoid(self, x):
return 1 / (1 + math.exp(-x))
def sigmoid_derivative(self, x):
return x * (1 - x)
def forward(self, inputs):
self.hidden_input1 = [
sum(inputs[i] * self.weights_input_hidden1[j][i] for i in range(self.input_size)) + self.bias_hidden1[j]
for j in range(self.hidden_size1)
]
self.hidden_output1 = [self.sigmoid(x) for x in self.hidden_input1]
self.hidden_input2 = [
sum(self.hidden_output1[i] * self.weights_hidden1_hidden2[j][i] for i in range(self.hidden_size1)) + self.bias_hidden2[j]
for j in range(self.hidden_size2)
]
self.hidden_output2 = [self.sigmoid(x) for x in self.hidden_input2]
self.output_input = [
sum(self.hidden_output2[i] * self.weights_hidden2_output[j][i] for i in range(self.hidden_size2)) + self.bias_output[j]
for j in range(self.output_size)
]
self.output_output = [self.sigmoid(x) for x in self.output_input]
return self.output_output
def backward(self, inputs, target, learning_rate=0.1):
output_errors = [target[i] - self.output_output[i] for i in range(self.output_size)]
output_deltas = [output_errors[i] * self.sigmoid_derivative(self.output_output[i])
for i in range(self.output_size)]
hidden2_errors = [
sum(output_deltas[k] * self.weights_hidden2_output[k][j] for k in range(self.output_size))
for j in range(self.hidden_size2)
]
hidden2_deltas = [hidden2_errors[j] * self.sigmoid_derivative(self.hidden_output2[j])
for j in range(self.hidden_size2)]
hidden1_errors = [
sum(hidden2_deltas[k] * self.weights_hidden1_hidden2[k][j] for k in range(self.hidden_size2))
for j in range(self.hidden_size1)
]
hidden1_deltas = [hidden1_errors[j] * self.sigmoid_derivative(self.hidden_output1[j])
for j in range(self.hidden_size1)]
for i in range(self.output_size):
for j in range(self.hidden_size2):
self.weights_hidden2_output[i][j] += learning_rate * output_deltas[i] * self.hidden_output2[j]
self.bias_output[i] += learning_rate * output_deltas[i]
for i in range(self.hidden_size2):
for j in range(self.hidden_size1):
self.weights_hidden1_hidden2[i][j] += learning_rate * hidden2_deltas[i] * self.hidden_output1[j]
self.bias_hidden2[i] += learning_rate * hidden2_deltas[i]
for i in range(self.hidden_size1):
for j in range(self.input_size):
self.weights_input_hidden1[i][j] += learning_rate * hidden1_deltas[i] * inputs[j]
self.bias_hidden1[i] += learning_rate * hidden1_deltas[i]
class RecurrentNeuralNetwork:
def __init__(self, input_size, hidden_size, output_size):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.weights_input_hidden = [
[random.random() for _ in range(input_size)] for _ in range(hidden_size)
]
self.weights_hidden_hidden = [
[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)
]
self.weights_hidden_output = [
[random.random() for _ in range(hidden_size)] for _ in range(output_size)
]
self.bias_hidden = [random.random() for _ in range(hidden_size)]
self.bias_output = [random.random() for _ in range(output_size)]
def sigmoid(self, x):
return 1 / (1 + math.exp(-x))
def sigmoid_derivative(self, x):
return x * (1 - x)
def forward(self, inputs):
self.hidden_state = [0] * self.hidden_size
for _ in range(2):
for i in range(len(inputs)):
current_input = [0] * self.input_size
current_input[i] = inputs[i]
combined = [
sum(current_input[k] * self.weights_input_hidden[j][k] for k in range(self.input_size)) +
sum(self.hidden_state[k] * self.weights_hidden_hidden[j][k] for k in range(self.hidden_size)) +
self.bias_hidden[j]
for j in range(self.hidden_size)
]
self.hidden_state = [self.sigmoid(val) for val in combined]
output = [
sum(self.hidden_state[k] * self.weights_hidden_output[i][k] for k in range(self.hidden_size)) +
self.bias_output[i]
for i in range(self.output_size)
]
return [self.sigmoid(o) for o in output]
def backward(self, inputs, target, learning_rate=0.1):
output = self.forward(inputs)
output_errors = [target[i] - output[i] for i in range(self.output_size)]
output_deltas = [output_errors[i] * self.sigmoid_derivative(output[i])
for i in range(self.output_size)]
hidden_errors = [
sum(output_deltas[k] * self.weights_hidden_output[k][j] for k in range(self.output_size))
for j in range(self.hidden_size)
]
hidden_deltas = [hidden_errors[j] * self.sigmoid_derivative(self.hidden_state[j])
for j in range(self.hidden_size)]
for i in range(self.output_size):
for j in range(self.hidden_size):
self.weights_hidden_output[i][j] += learning_rate * output_deltas[i] * self.hidden_state[j]
self.bias_output[i] += learning_rate * output_deltas[i]
for j in range(self.hidden_size):
for k in range(self.input_size):
self.weights_input_hidden[j][k] += learning_rate * hidden_deltas[j] * (inputs[k] if k < len(inputs) else 0)
self.bias_hidden[j] += learning_rate * hidden_deltas[j]
return output_errors
class ConvolutionalNeuralNetwork:
def __init__(self, input_length, kernel_size1, kernel_size2, output_size):
self.input_length = input_length
self.kernel_size1 = kernel_size1
self.kernel_size2 = kernel_size2
self.output_size = output_size
self.kernel1 = [random.random() for _ in range(kernel_size1)]
self.bias1 = random.random()
self.kernel2 = [random.random() for _ in range(kernel_size2)]
self.bias2 = random.random()
self.weights_output = [
[random.random() for _ in range(input_length - kernel_size1 - kernel_size2 + 2)]
for _ in range(output_size)
]
self.bias_output = [random.random() for _ in range(output_size)]
def relu(self, x):
return x if x > 0 else 0
def relu_derivative(self, x):
return 1 if x > 0 else 0
def convolve(self, inputs, kernel, bias):
conv_output = []
kernel_size = len(kernel)
for i in range(len(inputs) - kernel_size + 1):
s = sum(inputs[i + j] * kernel[j] for j in range(kernel_size)) + bias
conv_output.append(self.relu(s))
return conv_output
def forward(self, inputs):
conv1 = self.convolve(inputs, self.kernel1, self.bias1)
conv2 = self.convolve(conv1, self.kernel2, self.bias2)
fc_input = conv2
output = [
sum(fc_input[j] * self.weights_output[i][j] for j in range(len(fc_input))) + self.bias_output[i]
for i in range(self.output_size)
]
return [self.relu(o) for o in output]
def backward(self, inputs, target, learning_rate=0.1):
output = self.forward(inputs)
output_errors = [target[i] - output[i] for i in range(self.output_size)]
for i in range(self.output_size):
for j in range(len(inputs) - self.kernel_size1 - self.kernel_size2 + 2):
self.weights_output[i][j] += learning_rate * output_errors[i]
self.bias_output[i] += learning_rate * output_errors[i]
return output_errors
class GeneticAlgorithm:
def __init__(self, population_size, gene_length):
self.population_size = population_size
self.gene_length = gene_length
self.population = [
[random.random() for _ in range(gene_length)] for _ in range(population_size)
]
def fitness(self, individual):
return -sum((gene - PHI) ** 2 for gene in individual)
def selection(self):
selected = sorted(self.population, key=self.fitness, reverse=True)
return selected[: self.population_size // 2]
def crossover(self, parent1, parent2):
point = random.randint(1, self.gene_length - 1)
child = parent1[:point] + parent2[point:]
return child
def mutate(self, individual, mutation_rate=0.01):
for i in range(self.gene_length):
if random.random() < mutation_rate:
individual[i] = random.random()
return individual
def evolve(self, generations):
for _ in range(generations):
selected = self.selection()
new_population = selected[:]
while len(new_population) < self.population_size:
parent1 = random.choice(selected)
parent2 = random.choice(selected)
child = self.crossover(parent1, parent2)
child = self.mutate(child)
new_population.append(child)
self.population = new_population
best = max(self.population, key=self.fitness)
return best, self.fitness(best)
class LSTM:
def __init__(self, input_size, hidden_size, output_size):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.W_i = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
self.U_i = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
self.b_i = [random.random() for _ in range(hidden_size)]
self.W_f = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
self.U_f = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
self.b_f = [random.random() for _ in range(hidden_size)]
self.W_o = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
self.U_o = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
self.b_o = [random.random() for _ in range(hidden_size)]
self.W_c = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
self.U_c = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
self.b_c = [random.random() for _ in range(hidden_size)]
self.W_y = [[random.random() for _ in range(hidden_size)] for _ in range(output_size)]
self.b_y = [random.random() for _ in range(output_size)]
def sigmoid(self, x):
return 1 / (1 + math.exp(-x))
def forward(self, inputs):
h = [0] * self.hidden_size
c = [0] * self.hidden_size
i_gate = []
for j in range(self.hidden_size):
s = sum(inputs[k] * self.W_i[j][k] for k in range(self.input_size)) + \
sum(h[k] * self.U_i[j][k] for k in range(self.hidden_size)) + self.b_i[j]
i_gate.append(self.sigmoid(s))
f_gate = []
for j in range(self.hidden_size):
s = sum(inputs[k] * self.W_f[j][k] for k in range(self.input_size)) + \
sum(h[k] * self.U_f[j][k] for k in range(self.hidden_size)) + self.b_f[j]
f_gate.append(self.sigmoid(s))
o_gate = []
for j in range(self.hidden_size):
s = sum(inputs[k] * self.W_o[j][k] for k in range(self.input_size)) + \
sum(h[k] * self.U_o[j][k] for k in range(self.hidden_size)) + self.b_o[j]
o_gate.append(self.sigmoid(s))
g_gate = []
for j in range(self.hidden_size):
s = sum(inputs[k] * self.W_c[j][k] for k in range(self.input_size)) + \
sum(h[k] * self.U_c[j][k] for k in range(self.hidden_size)) + self.b_c[j]
g_gate.append(math.tanh(s))
c = [f_gate[j] * c[j] + i_gate[j] * g_gate[j] for j in range(self.hidden_size)]
h = [o_gate[j] * math.tanh(c[j]) for j in range(self.hidden_size)]
y = []
for i in range(self.output_size):
s = sum(h[j] * self.W_y[i][j] for j in range(self.hidden_size)) + self.b_y[i]
y.append(self.sigmoid(s))
return y
class Transformer:
def __init__(self, d_model, num_tokens):
self.d_model = d_model
self.num_tokens = num_tokens
self.W_q = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
self.W_k = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
self.W_v = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
self.W_o = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
def dot_product(self, a, b):
return sum(x * y for x, y in zip(a, b))
def matmul_vector(self, matrix, vector):
return [sum(matrix[i][j] * vector[j] for j in range(len(vector))) for i in range(len(matrix))]
def softmax(self, x):
m = max(x)
exps = [math.exp(i - m) for i in x]
s = sum(exps)
return [j / s for j in exps]
def forward(self, inputs):
queries = [self.matmul_vector(self.W_q, token) for token in inputs]
keys = [self.matmul_vector(self.W_k, token) for token in inputs]
values = [self.matmul_vector(self.W_v, token) for token in inputs]
outputs = []
for i in range(len(inputs)):
scores = []
for j in range(len(inputs)):
score = self.dot_product(queries[i], keys[j]) / math.sqrt(self.d_model)
scores.append(score)
attn = self.softmax(scores)
attn_output = [0] * self.d_model
for j in range(len(inputs)):
for k in range(self.d_model):
attn_output[k] += attn[j] * values[j][k]
out = self.matmul_vector(self.W_o, attn_output)
outputs.append(out)
avg_output = [sum(x[k] for x in outputs) / len(outputs) for k in range(self.d_model)]
proj_weights = [[random.random() for _ in range(self.d_model)] for _ in range(self.num_tokens)]
proj_bias = [random.random() for _ in range(self.num_tokens)]
token_scores = [
sum(avg_output[k] * proj_weights[i][k] for k in range(self.d_model)) + proj_bias[i]
for i in range(self.num_tokens)
]
token_output = [1 / (1 + math.exp(-score)) for score in token_scores]
return token_output
unique_words = list(set(words))
word_to_index = {word: i for i, word in enumerate(unique_words)}
index_to_word = {i: word for word, i in word_to_index.items()}
input_data = [[0] * len(unique_words) for _ in range(len(words) - 2)]
for i in range(len(words) - 2):
input_data[i][word_to_index[words[i]]] = 1
output_data = [[0] * len(unique_words) for _ in range(len(words) - 2)]
for i in range(len(words) - 2):
output_data[i][word_to_index[words[i + 1]]] = 1
input_size = len(unique_words)
hidden_size1 = round(PHI * input_size)
hidden_size2 = round(PHI * hidden_size1)
output_size = len(unique_words)
nn = NeuralNetwork(input_size, hidden_size1, hidden_size2, output_size)
epochs = round(100 * PHI)
for epoch in range(epochs):
for i in range(len(input_data)):
nn.forward(input_data[i])
nn.backward(input_data[i], output_data[i], learning_rate=0.1)
if (epoch + 1) % round(PHI) == 0:
print("Feedforward NN Epoch {}/{}".format(epoch + 1, epochs))
rnn = RecurrentNeuralNetwork(input_size, hidden_size1, output_size)
rnn_output = rnn.forward(input_data[0])
print("Recurrent NN Output:", rnn_output)
kernel_size1 = round(3 * PHI)
kernel_size2 = round(2 * PHI)
cnn = ConvolutionalNeuralNetwork(input_length=round(10 * PHI), kernel_size1=kernel_size1,
kernel_size2=kernel_size2, output_size=output_size)
sample_input = [random.random() for _ in range(round(10 * PHI))]
cnn_output = cnn.forward(sample_input)
print("Convolutional NN Output:", cnn_output)
population_size = round(10 * PHI)
ga = GeneticAlgorithm(population_size, round(PHI * 5))
best_individual, best_fitness = ga.evolve(round(50 * PHI))
print("Genetic Algorithm Best Individual:", best_individual, "Fitness:", best_fitness)
lstm_hidden_size = round(PHI * input_size)
lstm = LSTM(input_size, lstm_hidden_size, output_size)
lstm_output = lstm.forward(input_data[0])
print("LSTM Output:", lstm_output)
transformer_d_model = round(PHI * input_size)
transformer = Transformer(transformer_d_model, output_size)
transformer_input = []
for i in range(len(unique_words)):
vec = [0] * transformer_d_model
if i < transformer_d_model:
vec[i] = 1
transformer_input.append(vec)
transformer_output = transformer.forward(transformer_input)
print("Transformer Output:", transformer_output)
def advanced_text_generation(input_vector):
ff_output = nn.forward(input_vector)
rnn_out = rnn.forward(input_vector)
lstm_out = lstm.forward(input_vector)
transformer_out = transformer.forward([input_vector])
combined = [
(ff_output[i] + rnn_out[i] + lstm_out[i] + transformer_out[i]) / 4
for i in range(len(ff_output))
]
predicted_index = combined.index(max(combined))
predicted_word = index_to_word[predicted_index]
long_text = ""
current_length = round(10 * PHI)
for _ in range(5):
segment = generate_text(current_length)
long_text += segment + " "
current_length = round(current_length * PHI)
return long_text + predicted_word
def chat(user_input, history=[]):
print("FiPhi-NeuralMark ACC Initialized")
base_length = 1
# Process user input
user_input_tokens = user_input.split()
input_vector = [0] * len(unique_words)
for word in user_input_tokens:
if word in word_to_index:
input_vector[word_to_index[word]] = 1
# Generate the response (only one response generated here)
response = advanced_text_generation(input_vector)
response = response[:1]
# Clear previous history and only store the current user input and response
history = [{"role": "user", "content": user_input}, {"role": "assistant", "content": response}]
# Return only the most recent pair (user input + assistant response)
return history
demo = gr.ChatInterface(
fn=chat,
type="messages",
editable=True,
save_history=True,
analytics_enabled=True,
flagging_mode="manual",
chatbot=gr.Chatbot(
type="messages",
label="🧠FiPhi-NeuralMark-V3🧠",
show_copy_button=True,
group_consecutive_messages=False,
avatar_images=(
"https://huggingface.co/spaces/TejAndrewsACC/Z3ta_Z/resolve/main/Screenshot_20250201-131420.png",
"https://huggingface.co/spaces/TejAndrewsACC/FiPhi-NeuralMark-V3-Chat/resolve/main/Logo.jpeg"
),
placeholder="🧠Hi, I'm FiPhi-NeuralMark-V3🧠",
show_copy_all_button=True
),
theme="TejAndrewsACC/FiPhi"
)
if __name__ == "__main__":
demo.launch(share=True)