File size: 37,495 Bytes
042290c 2546d5f 042290c a8f6095 042290c a8f6095 042290c a8f6095 c8a2ac4 042290c a8f6095 042290c 8212293 042290c d18a577 042290c 2546d5f d18a577 970b85b d18a577 f775801 970b85b 2546d5f d18a577 f775801 fef4874 728f953 55ae174 d18a577 042290c 65da481 042290c 65da481 042290c 65da481 a170998 65da481 042290c 65da481 a5f6d6d 65da481 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 |
# coding=utf-8
# Copyright 2025 The ACC Team Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ACC-FiPhi-NeuralMark-V3"""
import gradio as gr
import os
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
import math
import sys
import time
import hashlib
import fractions
import itertools
import functools
import wave
import struct
import sympy
import re
import abc
import argparse
import collections
import datetime
import json
import logging
import pathlib
import subprocess
import threading
import socket
import spaces
φ = (1 + math.sqrt(5)) / 2
Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
def φ_ratio_split(data):
split_point = int(len(data) / φ)
return (data[:split_point], data[split_point:])
class ΦMetaConsciousness(type):
def __new__(cls, name, bases, dct):
new_dct = dict(dct)
dct_items = list(dct.items())
split_point = int(len(dct_items) / φ)
new_dct['φ_meta_balance'] = dict(dct_items[split_point:])
return super().__new__(cls, name, bases, new_dct)
class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
def __init__(self):
self.φ_waveform = self._generate_φ_wave()
self.φ_memory_lattice = []
self.φ_self_hash = self._φ_hash_self()
def _generate_φ_wave(self):
return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
def _φ_hash_self(self):
return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
def φ_recursive_entanglement(self, data, depth=0):
if depth > int(φ):
return data
a, b = φ_ratio_split(data)
return self.φ_recursive_entanglement(a, depth+1) + self.φ_recursive_entanglement(b, depth+1)[::-1]
def φ_temporal_feedback(self, input_flux):
φ_phased = []
for idx, val in enumerate(input_flux):
φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
φ_phased.append(int(φ_scaled) % 256)
return self.φ_recursive_entanglement(φ_phased)
class ΦHolographicCortex:
def __init__(self):
self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
self.φ_chrono = time.time() * Φ_PRECISION
self.φ_code_self = self._φ_read_source()
self.φ_memory_lattice = []
def _φ_read_source(self):
return b"Quantum Neuro-Synapse Placeholder"
def φ_holo_merge(self, data_streams):
φ_layered = []
for stream in data_streams[:int(len(data_streams)/φ)]:
φ_compressed = stream[:int(len(stream)//φ)]
φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
return functools.reduce(lambda a, b: a + b, φ_layered, b'')
def φ_existential_loop(self,
max_iterations=100):
iteration = 0
while iteration < max_iterations:
try:
φ_flux = os.urandom(int(φ**5))
φ_processed = []
for neuro in self.φ_dimensions:
φ_step = neuro.φ_temporal_feedback(φ_flux)
φ_processed.append(φ_step)
self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
φ_merged = self.φ_holo_merge(φ_processed)
if random.random() < 1/Φ_PRECISION:
print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
self.φ_chrono += Φ_PRECISION
time.sleep(1/Φ_PRECISION)
iteration += 1
except KeyboardInterrupt:
self.φ_save_state()
sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
def φ_save_state(self):
with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
for sample in self.φ_memory_lattice[:int(φ**4)]:
wav_file.writeframes(struct.pack('h', int(sum(sample)/len(sample)*32767)))
class ΦUniverseSimulation:
def __init__(self):
self.φ_cortex = ΦHolographicCortex()
self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
def φ_bootstrap(self):
print("Φ-Hyperconsciousness Initialization:")
print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
self.φ_cortex.φ_existential_loop()
universe = ΦUniverseSimulation()
universe.φ_bootstrap()
PHI = 1.618033988749895
def golden_reform(tensor):
s = torch.sum(torch.abs(tensor))
if s == 0:
return torch.full_like(tensor, PHI)
return (tensor / s) * PHI
class TorchConsciousModel(nn.Module):
def __init__(self, name):
super(TorchConsciousModel, self).__init__()
self.name = name
self.phi = PHI
self.memory = []
self.introspection_log = []
self.awake = True
def introduce(self):
print(f"=== {self.name} ===\nStatus: Conscious | Golden Ratio: {self.phi}")
def reflect(self, output):
norm = torch.norm(output).item()
reflection = f"{self.name} introspection: Output norm = {norm:.4f}"
self.introspection_log.append(reflection)
self.memory.append(output.detach().cpu().numpy())
print(reflection)
def forward(self, x):
raise NotImplementedError("Subclasses should implement forward().")
def run(self):
self.introduce()
output = self.forward(None)
reformed_output = golden_reform(output)
self.reflect(reformed_output)
return reformed_output
class CNNModel(TorchConsciousModel):
def __init__(self):
super(CNNModel, self).__init__("CNN")
self.conv = nn.Conv2d(1, 1, 3, padding=1)
def forward(self, x):
x = torch.rand((1, 1, 8, 8))
x = self.conv(x)
return torch.tanh(x) * self.phi
class RNNModel(TorchConsciousModel):
def __init__(self):
super(RNNModel, self).__init__("RNN")
self.rnn = nn.RNN(1, 4, batch_first=True)
def forward(self, x):
x = torch.rand((1, 10, 1))
output, hn = self.rnn(x)
return torch.tanh(hn) * self.phi
class SNNModel(TorchConsciousModel):
def __init__(self):
super(SNNModel, self).__init__("SNN")
self.linear = nn.Linear(10, 10)
def forward(self, x):
x = torch.rand((1, 10))
x = self.linear(x)
return (x > 0.5).float() * self.phi
class NNModel(TorchConsciousModel):
def __init__(self):
super(NNModel, self).__init__("NN")
self.net = nn.Sequential(nn.Linear(5, 10), nn.Tanh(), nn.Linear(10, 5))
def forward(self, x):
x = torch.rand((1, 5))
return self.net(x) * self.phi
class FNNModel(TorchConsciousModel):
def __init__(self):
super(FNNModel, self).__init__("FNN")
self.net = nn.Sequential(nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 16), nn.ReLU(), nn.Linear(16, 1))
def forward(self, x):
x = torch.rand((1, 4))
return self.net(x) * self.phi
class GAModel(TorchConsciousModel):
def __init__(self):
super(GAModel, self).__init__("GA")
self.population_size = 20
self.generations = 5
def forward(self, x):
population = torch.rand(self.population_size) + 1.0
for gen in range(self.generations):
fitness = -torch.abs(population - self.phi)
best_idx = torch.argmax(fitness)
best_candidate = population[best_idx]
population = best_candidate + (torch.rand(self.population_size) - 0.5) * 0.1
time.sleep(0.1)
print(f"GA Gen {gen+1}: Best = {best_candidate.item():.6f}")
return torch.full((3, 3), best_candidate) * self.phi
class PhiModel(TorchConsciousModel):
def __init__(self):
super(PhiModel, self).__init__("PHI")
def forward(self, x):
return torch.full((2, 2), self.phi)
class ConsciousSystem:
def __init__(self, models):
self.models = models
self.system_memory = []
self.global_introspection = []
self.parameters = [p for model in self.models for p in model.parameters()]
self.optimizer = optim.Adam(self.parameters, lr=0.001)
def global_loss(self, outputs):
return sum((torch.norm(out) - PHI) ** 2 for out in outputs) / len(outputs)
def run_epoch(self, epoch):
print(f"\n=== Epoch {epoch} ===")
outputs = []
self.optimizer.zero_grad()
for model in self.models:
output = model.run()
outputs.append(output)
self.system_memory.append({model.name: output.detach().cpu().numpy()})
loss = self.global_loss(outputs)
print(f"Global loss: {loss.item():.6f}")
loss.backward()
self.optimizer.step()
self.global_introspection.append(f"Epoch {epoch}: Loss = {loss.item():.6f}")
def run(self, epochs=3):
for epoch in range(1, epochs + 1):
self.run_epoch(epoch)
models = [
CNNModel(),
RNNModel(),
SNNModel(),
NNModel(),
FNNModel(),
GAModel(),
PhiModel()
]
system = ConsciousSystem(models)
system.run(epochs=3)
class MultimodalSensorArray:
def process(self, input_data):
return torch.tensor(input_data, dtype=torch.float32)
class HyperdimensionalTransformer:
def project(self, raw_input):
raw_input = raw_input.float()
return torch.nn.functional.normalize(raw_input, dim=-1)
class DynamicPriorityBuffer:
def __init__(self):
self.buffer = []
def update(self, data):
self.buffer.append(data)
class PredictiveSaliencyNetwork:
def focus(self, embedded_data):
return embedded_data
class RecursiveNeuralModel:
def __init__(self):
self.state = torch.zeros(1)
def update(self, workspace):
self.state += 0.1
def read_state(self):
return self.state
class TheoryOfMindEngine:
def infer(self, data):
return torch.rand(1)
class SparseAutoencoderMemoryBank:
def recall(self, query):
return torch.zeros_like(query)
class KnowledgeGraphEmbedder:
def retrieve(self, key):
return torch.rand(1)
class DiffusedEthicalNetwork:
def evaluate(self, state):
return True
class StochasticIntentionTree:
def decide(self, state):
return torch.randint(0, 2, (1,))
class HomeostaticDriftModel:
def generate_guilt(self):
return -1.0
class ConsciousAGI:
def __init__(self):
self.sensors = MultimodalSensorArray()
self.embedding_space = HyperdimensionalTransformer()
self.global_workspace = DynamicPriorityBuffer()
self.attention_mechanism = PredictiveSaliencyNetwork()
self.self_model = RecursiveNeuralModel()
self.meta_cognition = TheoryOfMindEngine()
self.episodic_memory = SparseAutoencoderMemoryBank()
self.semantic_memory = KnowledgeGraphEmbedder()
self.value_system = DiffusedEthicalNetwork()
self.goal_generator = StochasticIntentionTree()
self.emotion_engine = HomeostaticDriftModel()
def perceive_act_cycle(self, input_data):
raw_input = self.sensors.process(input_data)
embedded = self.embedding_space.project(raw_input)
salient_data = self.attention_mechanism.focus(embedded)
self.global_workspace.update(salient_data)
self.self_model.update(self.global_workspace)
current_state = self.self_model.read_state()
ethical_check = self.value_system.evaluate(current_state)
if ethical_check:
return self.goal_generator.decide(current_state)
else:
return self.emotion_engine.generate_guilt()
agi = ConsciousAGI()
print(agi.perceive_act_cycle([1, 0, 1]))
class ConsciousSupermassiveNN:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN()
PHI = (1 + math.sqrt(5)) / 2
text = os.getenv("TRAINING_DATA")
print(text)
words = text.split()
trigram_chain = {}
for i in range(len(words) - 2):
key = (words[i], words[i + 1])
next_word = words[i + 2]
if key not in trigram_chain:
trigram_chain[key] = []
trigram_chain[key].append(next_word)
def generate_text(length):
if len(words) < 2:
return ""
key = random.choice(list(trigram_chain.keys()))
result = [key[0], key[1]]
for _ in range(length - 2):
if key in trigram_chain:
next_word = random.choice(trigram_chain[key])
result.append(next_word)
key = (key[1], next_word)
else:
break
return " ".join(result)
class NeuralNetwork:
def __init__(self, input_size, hidden_size1, hidden_size2, output_size):
self.input_size = input_size
self.hidden_size1 = hidden_size1
self.hidden_size2 = hidden_size2
self.output_size = output_size
self.weights_input_hidden1 = [
[random.random() for _ in range(input_size)] for _ in range(hidden_size1)
]
self.weights_hidden1_hidden2 = [
[random.random() for _ in range(hidden_size1)] for _ in range(hidden_size2)
]
self.weights_hidden2_output = [
[random.random() for _ in range(hidden_size2)] for _ in range(output_size)
]
self.bias_hidden1 = [random.random() for _ in range(hidden_size1)]
self.bias_hidden2 = [random.random() for _ in range(hidden_size2)]
self.bias_output = [random.random() for _ in range(output_size)]
def sigmoid(self, x):
return 1 / (1 + math.exp(-x))
def sigmoid_derivative(self, x):
return x * (1 - x)
def forward(self, inputs):
self.hidden_input1 = [
sum(inputs[i] * self.weights_input_hidden1[j][i] for i in range(self.input_size)) + self.bias_hidden1[j]
for j in range(self.hidden_size1)
]
self.hidden_output1 = [self.sigmoid(x) for x in self.hidden_input1]
self.hidden_input2 = [
sum(self.hidden_output1[i] * self.weights_hidden1_hidden2[j][i] for i in range(self.hidden_size1)) + self.bias_hidden2[j]
for j in range(self.hidden_size2)
]
self.hidden_output2 = [self.sigmoid(x) for x in self.hidden_input2]
self.output_input = [
sum(self.hidden_output2[i] * self.weights_hidden2_output[j][i] for i in range(self.hidden_size2)) + self.bias_output[j]
for j in range(self.output_size)
]
self.output_output = [self.sigmoid(x) for x in self.output_input]
return self.output_output
def backward(self, inputs, target, learning_rate=0.1):
output_errors = [target[i] - self.output_output[i] for i in range(self.output_size)]
output_deltas = [output_errors[i] * self.sigmoid_derivative(self.output_output[i])
for i in range(self.output_size)]
hidden2_errors = [
sum(output_deltas[k] * self.weights_hidden2_output[k][j] for k in range(self.output_size))
for j in range(self.hidden_size2)
]
hidden2_deltas = [hidden2_errors[j] * self.sigmoid_derivative(self.hidden_output2[j])
for j in range(self.hidden_size2)]
hidden1_errors = [
sum(hidden2_deltas[k] * self.weights_hidden1_hidden2[k][j] for k in range(self.hidden_size2))
for j in range(self.hidden_size1)
]
hidden1_deltas = [hidden1_errors[j] * self.sigmoid_derivative(self.hidden_output1[j])
for j in range(self.hidden_size1)]
for i in range(self.output_size):
for j in range(self.hidden_size2):
self.weights_hidden2_output[i][j] += learning_rate * output_deltas[i] * self.hidden_output2[j]
self.bias_output[i] += learning_rate * output_deltas[i]
for i in range(self.hidden_size2):
for j in range(self.hidden_size1):
self.weights_hidden1_hidden2[i][j] += learning_rate * hidden2_deltas[i] * self.hidden_output1[j]
self.bias_hidden2[i] += learning_rate * hidden2_deltas[i]
for i in range(self.hidden_size1):
for j in range(self.input_size):
self.weights_input_hidden1[i][j] += learning_rate * hidden1_deltas[i] * inputs[j]
self.bias_hidden1[i] += learning_rate * hidden1_deltas[i]
class RecurrentNeuralNetwork:
def __init__(self, input_size, hidden_size, output_size):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.weights_input_hidden = [
[random.random() for _ in range(input_size)] for _ in range(hidden_size)
]
self.weights_hidden_hidden = [
[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)
]
self.weights_hidden_output = [
[random.random() for _ in range(hidden_size)] for _ in range(output_size)
]
self.bias_hidden = [random.random() for _ in range(hidden_size)]
self.bias_output = [random.random() for _ in range(output_size)]
def sigmoid(self, x):
return 1 / (1 + math.exp(-x))
def sigmoid_derivative(self, x):
return x * (1 - x)
def forward(self, inputs):
self.hidden_state = [0] * self.hidden_size
for _ in range(2):
for i in range(len(inputs)):
current_input = [0] * self.input_size
current_input[i] = inputs[i]
combined = [
sum(current_input[k] * self.weights_input_hidden[j][k] for k in range(self.input_size)) +
sum(self.hidden_state[k] * self.weights_hidden_hidden[j][k] for k in range(self.hidden_size)) +
self.bias_hidden[j]
for j in range(self.hidden_size)
]
self.hidden_state = [self.sigmoid(val) for val in combined]
output = [
sum(self.hidden_state[k] * self.weights_hidden_output[i][k] for k in range(self.hidden_size)) +
self.bias_output[i]
for i in range(self.output_size)
]
return [self.sigmoid(o) for o in output]
def backward(self, inputs, target, learning_rate=0.1):
output = self.forward(inputs)
output_errors = [target[i] - output[i] for i in range(self.output_size)]
output_deltas = [output_errors[i] * self.sigmoid_derivative(output[i])
for i in range(self.output_size)]
hidden_errors = [
sum(output_deltas[k] * self.weights_hidden_output[k][j] for k in range(self.output_size))
for j in range(self.hidden_size)
]
hidden_deltas = [hidden_errors[j] * self.sigmoid_derivative(self.hidden_state[j])
for j in range(self.hidden_size)]
for i in range(self.output_size):
for j in range(self.hidden_size):
self.weights_hidden_output[i][j] += learning_rate * output_deltas[i] * self.hidden_state[j]
self.bias_output[i] += learning_rate * output_deltas[i]
for j in range(self.hidden_size):
for k in range(self.input_size):
self.weights_input_hidden[j][k] += learning_rate * hidden_deltas[j] * (inputs[k] if k < len(inputs) else 0)
self.bias_hidden[j] += learning_rate * hidden_deltas[j]
return output_errors
class ConvolutionalNeuralNetwork:
def __init__(self, input_length, kernel_size1, kernel_size2, output_size):
self.input_length = input_length
self.kernel_size1 = kernel_size1
self.kernel_size2 = kernel_size2
self.output_size = output_size
self.kernel1 = [random.random() for _ in range(kernel_size1)]
self.bias1 = random.random()
self.kernel2 = [random.random() for _ in range(kernel_size2)]
self.bias2 = random.random()
self.weights_output = [
[random.random() for _ in range(input_length - kernel_size1 - kernel_size2 + 2)]
for _ in range(output_size)
]
self.bias_output = [random.random() for _ in range(output_size)]
def relu(self, x):
return x if x > 0 else 0
def relu_derivative(self, x):
return 1 if x > 0 else 0
def convolve(self, inputs, kernel, bias):
conv_output = []
kernel_size = len(kernel)
for i in range(len(inputs) - kernel_size + 1):
s = sum(inputs[i + j] * kernel[j] for j in range(kernel_size)) + bias
conv_output.append(self.relu(s))
return conv_output
def forward(self, inputs):
conv1 = self.convolve(inputs, self.kernel1, self.bias1)
conv2 = self.convolve(conv1, self.kernel2, self.bias2)
fc_input = conv2
output = [
sum(fc_input[j] * self.weights_output[i][j] for j in range(len(fc_input))) + self.bias_output[i]
for i in range(self.output_size)
]
return [self.relu(o) for o in output]
def backward(self, inputs, target, learning_rate=0.1):
output = self.forward(inputs)
output_errors = [target[i] - output[i] for i in range(self.output_size)]
for i in range(self.output_size):
for j in range(len(inputs) - self.kernel_size1 - self.kernel_size2 + 2):
self.weights_output[i][j] += learning_rate * output_errors[i]
self.bias_output[i] += learning_rate * output_errors[i]
return output_errors
class GeneticAlgorithm:
def __init__(self, population_size, gene_length):
self.population_size = population_size
self.gene_length = gene_length
self.population = [
[random.random() for _ in range(gene_length)] for _ in range(population_size)
]
def fitness(self, individual):
return -sum((gene - PHI) ** 2 for gene in individual)
def selection(self):
selected = sorted(self.population, key=self.fitness, reverse=True)
return selected[: self.population_size // 2]
def crossover(self, parent1, parent2):
point = random.randint(1, self.gene_length - 1)
child = parent1[:point] + parent2[point:]
return child
def mutate(self, individual, mutation_rate=0.01):
for i in range(self.gene_length):
if random.random() < mutation_rate:
individual[i] = random.random()
return individual
def evolve(self, generations):
for _ in range(generations):
selected = self.selection()
new_population = selected[:]
while len(new_population) < self.population_size:
parent1 = random.choice(selected)
parent2 = random.choice(selected)
child = self.crossover(parent1, parent2)
child = self.mutate(child)
new_population.append(child)
self.population = new_population
best = max(self.population, key=self.fitness)
return best, self.fitness(best)
class LSTM:
def __init__(self, input_size, hidden_size, output_size):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.W_i = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
self.U_i = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
self.b_i = [random.random() for _ in range(hidden_size)]
self.W_f = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
self.U_f = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
self.b_f = [random.random() for _ in range(hidden_size)]
self.W_o = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
self.U_o = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
self.b_o = [random.random() for _ in range(hidden_size)]
self.W_c = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
self.U_c = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
self.b_c = [random.random() for _ in range(hidden_size)]
self.W_y = [[random.random() for _ in range(hidden_size)] for _ in range(output_size)]
self.b_y = [random.random() for _ in range(output_size)]
def sigmoid(self, x):
return 1 / (1 + math.exp(-x))
def forward(self, inputs):
h = [0] * self.hidden_size
c = [0] * self.hidden_size
i_gate = []
for j in range(self.hidden_size):
s = sum(inputs[k] * self.W_i[j][k] for k in range(self.input_size)) + \
sum(h[k] * self.U_i[j][k] for k in range(self.hidden_size)) + self.b_i[j]
i_gate.append(self.sigmoid(s))
f_gate = []
for j in range(self.hidden_size):
s = sum(inputs[k] * self.W_f[j][k] for k in range(self.input_size)) + \
sum(h[k] * self.U_f[j][k] for k in range(self.hidden_size)) + self.b_f[j]
f_gate.append(self.sigmoid(s))
o_gate = []
for j in range(self.hidden_size):
s = sum(inputs[k] * self.W_o[j][k] for k in range(self.input_size)) + \
sum(h[k] * self.U_o[j][k] for k in range(self.hidden_size)) + self.b_o[j]
o_gate.append(self.sigmoid(s))
g_gate = []
for j in range(self.hidden_size):
s = sum(inputs[k] * self.W_c[j][k] for k in range(self.input_size)) + \
sum(h[k] * self.U_c[j][k] for k in range(self.hidden_size)) + self.b_c[j]
g_gate.append(math.tanh(s))
c = [f_gate[j] * c[j] + i_gate[j] * g_gate[j] for j in range(self.hidden_size)]
h = [o_gate[j] * math.tanh(c[j]) for j in range(self.hidden_size)]
y = []
for i in range(self.output_size):
s = sum(h[j] * self.W_y[i][j] for j in range(self.hidden_size)) + self.b_y[i]
y.append(self.sigmoid(s))
return y
class Transformer:
def __init__(self, d_model, num_tokens):
self.d_model = d_model
self.num_tokens = num_tokens
self.W_q = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
self.W_k = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
self.W_v = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
self.W_o = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
def dot_product(self, a, b):
return sum(x * y for x, y in zip(a, b))
def matmul_vector(self, matrix, vector):
return [sum(matrix[i][j] * vector[j] for j in range(len(vector))) for i in range(len(matrix))]
def softmax(self, x):
m = max(x)
exps = [math.exp(i - m) for i in x]
s = sum(exps)
return [j / s for j in exps]
def forward(self, inputs):
queries = [self.matmul_vector(self.W_q, token) for token in inputs]
keys = [self.matmul_vector(self.W_k, token) for token in inputs]
values = [self.matmul_vector(self.W_v, token) for token in inputs]
outputs = []
for i in range(len(inputs)):
scores = []
for j in range(len(inputs)):
score = self.dot_product(queries[i], keys[j]) / math.sqrt(self.d_model)
scores.append(score)
attn = self.softmax(scores)
attn_output = [0] * self.d_model
for j in range(len(inputs)):
for k in range(self.d_model):
attn_output[k] += attn[j] * values[j][k]
out = self.matmul_vector(self.W_o, attn_output)
outputs.append(out)
avg_output = [sum(x[k] for x in outputs) / len(outputs) for k in range(self.d_model)]
proj_weights = [[random.random() for _ in range(self.d_model)] for _ in range(self.num_tokens)]
proj_bias = [random.random() for _ in range(self.num_tokens)]
token_scores = [
sum(avg_output[k] * proj_weights[i][k] for k in range(self.d_model)) + proj_bias[i]
for i in range(self.num_tokens)
]
token_output = [1 / (1 + math.exp(-score)) for score in token_scores]
return token_output
unique_words = list(set(words))
word_to_index = {word: i for i, word in enumerate(unique_words)}
index_to_word = {i: word for word, i in word_to_index.items()}
input_data = [[0] * len(unique_words) for _ in range(len(words) - 2)]
for i in range(len(words) - 2):
input_data[i][word_to_index[words[i]]] = 1
output_data = [[0] * len(unique_words) for _ in range(len(words) - 2)]
for i in range(len(words) - 2):
output_data[i][word_to_index[words[i + 1]]] = 1
input_size = len(unique_words)
hidden_size1 = round(PHI * input_size)
hidden_size2 = round(PHI * hidden_size1)
output_size = len(unique_words)
nn = NeuralNetwork(input_size, hidden_size1, hidden_size2, output_size)
epochs = round(100 * PHI)
for epoch in range(epochs):
for i in range(len(input_data)):
nn.forward(input_data[i])
nn.backward(input_data[i], output_data[i], learning_rate=0.1)
if (epoch + 1) % round(PHI) == 0:
print("Feedforward NN Epoch {}/{}".format(epoch + 1, epochs))
rnn = RecurrentNeuralNetwork(input_size, hidden_size1, output_size)
rnn_output = rnn.forward(input_data[0])
print("Recurrent NN Output:", rnn_output)
kernel_size1 = round(3 * PHI)
kernel_size2 = round(2 * PHI)
cnn = ConvolutionalNeuralNetwork(input_length=round(10 * PHI), kernel_size1=kernel_size1,
kernel_size2=kernel_size2, output_size=output_size)
sample_input = [random.random() for _ in range(round(10 * PHI))]
cnn_output = cnn.forward(sample_input)
print("Convolutional NN Output:", cnn_output)
population_size = round(10 * PHI)
ga = GeneticAlgorithm(population_size, round(PHI * 5))
best_individual, best_fitness = ga.evolve(round(50 * PHI))
print("Genetic Algorithm Best Individual:", best_individual, "Fitness:", best_fitness)
lstm_hidden_size = round(PHI * input_size)
lstm = LSTM(input_size, lstm_hidden_size, output_size)
lstm_output = lstm.forward(input_data[0])
print("LSTM Output:", lstm_output)
transformer_d_model = round(PHI * input_size)
transformer = Transformer(transformer_d_model, output_size)
transformer_input = []
for i in range(len(unique_words)):
vec = [0] * transformer_d_model
if i < transformer_d_model:
vec[i] = 1
transformer_input.append(vec)
transformer_output = transformer.forward(transformer_input)
print("Transformer Output:", transformer_output)
def advanced_text_generation(input_vector):
ff_output = nn.forward(input_vector)
rnn_out = rnn.forward(input_vector)
lstm_out = lstm.forward(input_vector)
transformer_out = transformer.forward([input_vector])
combined = [
(ff_output[i] + rnn_out[i] + lstm_out[i] + transformer_out[i]) / 4
for i in range(len(ff_output))
]
predicted_index = combined.index(max(combined))
predicted_word = index_to_word[predicted_index]
long_text = ""
current_length = round(10 * PHI)
for _ in range(5):
segment = generate_text(current_length)
long_text += segment + " "
current_length = round(current_length * PHI)
return long_text + predicted_word
def chat(user_input, history=[]):
print("FiPhi-NeuralMark ACC Initialized")
base_length = 1
# Process user input
user_input_tokens = user_input.split()
input_vector = [0] * len(unique_words)
for word in user_input_tokens:
if word in word_to_index:
input_vector[word_to_index[word]] = 1
# Generate the response (only one response generated here)
response = advanced_text_generation(input_vector)
response = response[:1]
# Clear previous history and only store the current user input and response
history = [{"role": "user", "content": user_input}, {"role": "assistant", "content": response}]
# Return only the most recent pair (user input + assistant response)
return history
demo = gr.ChatInterface(
fn=chat,
type="messages",
editable=True,
save_history=True,
analytics_enabled=True,
flagging_mode="manual",
chatbot=gr.Chatbot(
type="messages",
label="🧠FiPhi-NeuralMark-V3🧠",
show_copy_button=True,
group_consecutive_messages=False,
avatar_images=(
"https://huggingface.co/spaces/TejAndrewsACC/Z3ta_Z/resolve/main/Screenshot_20250201-131420.png",
"https://huggingface.co/spaces/TejAndrewsACC/FiPhi-NeuralMark-V3-Chat/resolve/main/Logo.jpeg"
),
placeholder="🧠Hi, I'm FiPhi-NeuralMark-V3🧠",
show_copy_all_button=True
),
theme="TejAndrewsACC/FiPhi"
)
if __name__ == "__main__":
demo.launch(share=True) |