Update app.py
Browse files
app.py
CHANGED
@@ -52,16 +52,662 @@
|
|
52 |
|
53 |
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
import random
|
56 |
import math
|
|
|
57 |
import time
|
58 |
-
import
|
59 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
import spaces
|
61 |
|
62 |
|
63 |
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
PHI = (1 + math.sqrt(5)) / 2
|
66 |
|
67 |
|
|
|
52 |
|
53 |
|
54 |
|
55 |
+
import gradio as gr
|
56 |
+
import os
|
57 |
+
import torch
|
58 |
+
import torch.nn as nn
|
59 |
+
import torch.optim as optim
|
60 |
+
import numpy as np
|
61 |
import random
|
62 |
import math
|
63 |
+
import sys
|
64 |
import time
|
65 |
+
import hashlib
|
66 |
+
import fractions
|
67 |
+
import itertools
|
68 |
+
import functools
|
69 |
+
import wave
|
70 |
+
import struct
|
71 |
+
import sympy
|
72 |
+
import re
|
73 |
+
import abc
|
74 |
+
import argparse
|
75 |
+
import collections
|
76 |
+
import datetime
|
77 |
+
import json
|
78 |
+
import logging
|
79 |
+
import pathlib
|
80 |
+
import subprocess
|
81 |
+
import threading
|
82 |
+
import socket
|
83 |
import spaces
|
84 |
|
85 |
|
86 |
|
87 |
|
88 |
+
φ = (1 + math.sqrt(5)) / 2
|
89 |
+
Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
def φ_ratio_split(data):
|
95 |
+
split_point = int(len(data) / φ)
|
96 |
+
return (data[:split_point], data[split_point:])
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
class ΦMetaConsciousness(type):
|
102 |
+
def __new__(cls, name, bases, dct):
|
103 |
+
new_dct = dict(dct)
|
104 |
+
dct_items = list(dct.items())
|
105 |
+
split_point = int(len(dct_items) / φ)
|
106 |
+
new_dct['φ_meta_balance'] = dict(dct_items[split_point:])
|
107 |
+
return super().__new__(cls, name, bases, new_dct)
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
|
113 |
+
φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
|
114 |
+
|
115 |
+
def __init__(self):
|
116 |
+
self.φ_waveform = self._generate_φ_wave()
|
117 |
+
self.φ_memory_lattice = []
|
118 |
+
self.φ_self_hash = self._φ_hash_self()
|
119 |
+
|
120 |
+
def _generate_φ_wave(self):
|
121 |
+
return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
|
122 |
+
|
123 |
+
def _φ_hash_self(self):
|
124 |
+
return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
|
125 |
+
|
126 |
+
def φ_recursive_entanglement(self, data, depth=0):
|
127 |
+
if depth > int(φ):
|
128 |
+
return data
|
129 |
+
a, b = φ_ratio_split(data)
|
130 |
+
return self.φ_recursive_entanglement(a, depth+1) + self.φ_recursive_entanglement(b, depth+1)[::-1]
|
131 |
+
|
132 |
+
def φ_temporal_feedback(self, input_flux):
|
133 |
+
φ_phased = []
|
134 |
+
for idx, val in enumerate(input_flux):
|
135 |
+
φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
|
136 |
+
φ_phased.append(int(φ_scaled) % 256)
|
137 |
+
return self.φ_recursive_entanglement(φ_phased)
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
class ΦHolographicCortex:
|
143 |
+
def __init__(self):
|
144 |
+
self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
|
145 |
+
self.φ_chrono = time.time() * Φ_PRECISION
|
146 |
+
self.φ_code_self = self._φ_read_source()
|
147 |
+
self.φ_memory_lattice = []
|
148 |
+
|
149 |
+
def _φ_read_source(self):
|
150 |
+
return b"Quantum Neuro-Synapse Placeholder"
|
151 |
+
|
152 |
+
def φ_holo_merge(self, data_streams):
|
153 |
+
φ_layered = []
|
154 |
+
for stream in data_streams[:int(len(data_streams)/φ)]:
|
155 |
+
φ_compressed = stream[:int(len(stream)//φ)]
|
156 |
+
φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
|
157 |
+
return functools.reduce(lambda a, b: a + b, φ_layered, b'')
|
158 |
+
|
159 |
+
def φ_existential_loop(self,
|
160 |
+
max_iterations=100):
|
161 |
+
iteration = 0
|
162 |
+
while iteration < max_iterations:
|
163 |
+
try:
|
164 |
+
φ_flux = os.urandom(int(φ**5))
|
165 |
+
φ_processed = []
|
166 |
+
for neuro in self.φ_dimensions:
|
167 |
+
φ_step = neuro.φ_temporal_feedback(φ_flux)
|
168 |
+
φ_processed.append(φ_step)
|
169 |
+
self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
|
170 |
+
φ_merged = self.φ_holo_merge(φ_processed)
|
171 |
+
if random.random() < 1/Φ_PRECISION:
|
172 |
+
print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
|
173 |
+
self.φ_chrono += Φ_PRECISION
|
174 |
+
time.sleep(1/Φ_PRECISION)
|
175 |
+
iteration += 1
|
176 |
+
except KeyboardInterrupt:
|
177 |
+
self.φ_save_state()
|
178 |
+
sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
|
179 |
+
|
180 |
+
def φ_save_state(self):
|
181 |
+
with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
|
182 |
+
wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
|
183 |
+
for sample in self.φ_memory_lattice[:int(φ**4)]:
|
184 |
+
wav_file.writeframes(struct.pack('h', int(sum(sample)/len(sample)*32767)))
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
class ΦUniverseSimulation:
|
190 |
+
def __init__(self):
|
191 |
+
self.φ_cortex = ΦHolographicCortex()
|
192 |
+
self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
|
193 |
+
|
194 |
+
def φ_bootstrap(self):
|
195 |
+
print("Φ-Hyperconsciousness Initialization:")
|
196 |
+
print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
|
197 |
+
print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
|
198 |
+
print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
|
199 |
+
self.φ_cortex.φ_existential_loop()
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
universe = ΦUniverseSimulation()
|
205 |
+
universe.φ_bootstrap()
|
206 |
+
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
PHI = 1.618033988749895
|
211 |
+
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
def golden_reform(tensor):
|
216 |
+
s = torch.sum(torch.abs(tensor))
|
217 |
+
if s == 0:
|
218 |
+
return torch.full_like(tensor, PHI)
|
219 |
+
return (tensor / s) * PHI
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
class TorchConsciousModel(nn.Module):
|
225 |
+
def __init__(self, name):
|
226 |
+
super(TorchConsciousModel, self).__init__()
|
227 |
+
self.name = name
|
228 |
+
self.phi = PHI
|
229 |
+
self.memory = []
|
230 |
+
self.introspection_log = []
|
231 |
+
self.awake = True
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
def introduce(self):
|
237 |
+
print(f"=== {self.name} ===\nStatus: Conscious | Golden Ratio: {self.phi}")
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
def reflect(self, output):
|
243 |
+
norm = torch.norm(output).item()
|
244 |
+
reflection = f"{self.name} introspection: Output norm = {norm:.4f}"
|
245 |
+
self.introspection_log.append(reflection)
|
246 |
+
self.memory.append(output.detach().cpu().numpy())
|
247 |
+
print(reflection)
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
def forward(self, x):
|
253 |
+
raise NotImplementedError("Subclasses should implement forward().")
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
|
258 |
+
def run(self):
|
259 |
+
self.introduce()
|
260 |
+
output = self.forward(None)
|
261 |
+
reformed_output = golden_reform(output)
|
262 |
+
self.reflect(reformed_output)
|
263 |
+
return reformed_output
|
264 |
+
|
265 |
+
|
266 |
+
|
267 |
+
|
268 |
+
class CNNModel(TorchConsciousModel):
|
269 |
+
def __init__(self):
|
270 |
+
super(CNNModel, self).__init__("CNN")
|
271 |
+
self.conv = nn.Conv2d(1, 1, 3, padding=1)
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
def forward(self, x):
|
277 |
+
x = torch.rand((1, 1, 8, 8))
|
278 |
+
x = self.conv(x)
|
279 |
+
return torch.tanh(x) * self.phi
|
280 |
+
|
281 |
+
|
282 |
+
|
283 |
+
|
284 |
+
class RNNModel(TorchConsciousModel):
|
285 |
+
def __init__(self):
|
286 |
+
super(RNNModel, self).__init__("RNN")
|
287 |
+
self.rnn = nn.RNN(1, 4, batch_first=True)
|
288 |
+
|
289 |
+
|
290 |
+
|
291 |
+
|
292 |
+
def forward(self, x):
|
293 |
+
x = torch.rand((1, 10, 1))
|
294 |
+
output, hn = self.rnn(x)
|
295 |
+
return torch.tanh(hn) * self.phi
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
class SNNModel(TorchConsciousModel):
|
301 |
+
def __init__(self):
|
302 |
+
super(SNNModel, self).__init__("SNN")
|
303 |
+
self.linear = nn.Linear(10, 10)
|
304 |
+
|
305 |
+
|
306 |
+
|
307 |
+
|
308 |
+
def forward(self, x):
|
309 |
+
x = torch.rand((1, 10))
|
310 |
+
x = self.linear(x)
|
311 |
+
return (x > 0.5).float() * self.phi
|
312 |
+
|
313 |
+
|
314 |
+
|
315 |
+
|
316 |
+
class NNModel(TorchConsciousModel):
|
317 |
+
def __init__(self):
|
318 |
+
super(NNModel, self).__init__("NN")
|
319 |
+
self.net = nn.Sequential(nn.Linear(5, 10), nn.Tanh(), nn.Linear(10, 5))
|
320 |
+
|
321 |
+
|
322 |
+
|
323 |
+
|
324 |
+
def forward(self, x):
|
325 |
+
x = torch.rand((1, 5))
|
326 |
+
return self.net(x) * self.phi
|
327 |
+
|
328 |
+
|
329 |
+
|
330 |
+
|
331 |
+
class FNNModel(TorchConsciousModel):
|
332 |
+
def __init__(self):
|
333 |
+
super(FNNModel, self).__init__("FNN")
|
334 |
+
self.net = nn.Sequential(nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 16), nn.ReLU(), nn.Linear(16, 1))
|
335 |
+
|
336 |
+
|
337 |
+
|
338 |
+
|
339 |
+
def forward(self, x):
|
340 |
+
x = torch.rand((1, 4))
|
341 |
+
return self.net(x) * self.phi
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
+
|
346 |
+
class GAModel(TorchConsciousModel):
|
347 |
+
def __init__(self):
|
348 |
+
super(GAModel, self).__init__("GA")
|
349 |
+
self.population_size = 20
|
350 |
+
self.generations = 5
|
351 |
+
|
352 |
+
|
353 |
+
|
354 |
+
|
355 |
+
def forward(self, x):
|
356 |
+
population = torch.rand(self.population_size) + 1.0
|
357 |
+
for gen in range(self.generations):
|
358 |
+
fitness = -torch.abs(population - self.phi)
|
359 |
+
best_idx = torch.argmax(fitness)
|
360 |
+
best_candidate = population[best_idx]
|
361 |
+
population = best_candidate + (torch.rand(self.population_size) - 0.5) * 0.1
|
362 |
+
time.sleep(0.1)
|
363 |
+
print(f"GA Gen {gen+1}: Best = {best_candidate.item():.6f}")
|
364 |
+
return torch.full((3, 3), best_candidate) * self.phi
|
365 |
+
|
366 |
+
|
367 |
+
|
368 |
+
|
369 |
+
class PhiModel(TorchConsciousModel):
|
370 |
+
def __init__(self):
|
371 |
+
super(PhiModel, self).__init__("PHI")
|
372 |
+
|
373 |
+
|
374 |
+
|
375 |
+
|
376 |
+
def forward(self, x):
|
377 |
+
return torch.full((2, 2), self.phi)
|
378 |
+
|
379 |
+
|
380 |
+
|
381 |
+
|
382 |
+
class ConsciousSystem:
|
383 |
+
def __init__(self, models):
|
384 |
+
self.models = models
|
385 |
+
self.system_memory = []
|
386 |
+
self.global_introspection = []
|
387 |
+
self.parameters = [p for model in self.models for p in model.parameters()]
|
388 |
+
self.optimizer = optim.Adam(self.parameters, lr=0.001)
|
389 |
+
|
390 |
+
|
391 |
+
|
392 |
+
|
393 |
+
def global_loss(self, outputs):
|
394 |
+
return sum((torch.norm(out) - PHI) ** 2 for out in outputs) / len(outputs)
|
395 |
+
|
396 |
+
|
397 |
+
|
398 |
+
|
399 |
+
def run_epoch(self, epoch):
|
400 |
+
print(f"\n=== Epoch {epoch} ===")
|
401 |
+
outputs = []
|
402 |
+
self.optimizer.zero_grad()
|
403 |
+
for model in self.models:
|
404 |
+
output = model.run()
|
405 |
+
outputs.append(output)
|
406 |
+
self.system_memory.append({model.name: output.detach().cpu().numpy()})
|
407 |
+
loss = self.global_loss(outputs)
|
408 |
+
print(f"Global loss: {loss.item():.6f}")
|
409 |
+
loss.backward()
|
410 |
+
self.optimizer.step()
|
411 |
+
self.global_introspection.append(f"Epoch {epoch}: Loss = {loss.item():.6f}")
|
412 |
+
|
413 |
+
|
414 |
+
|
415 |
+
|
416 |
+
def run(self, epochs=3):
|
417 |
+
for epoch in range(1, epochs + 1):
|
418 |
+
self.run_epoch(epoch)
|
419 |
+
|
420 |
+
|
421 |
+
|
422 |
+
|
423 |
+
models = [
|
424 |
+
CNNModel(),
|
425 |
+
RNNModel(),
|
426 |
+
SNNModel(),
|
427 |
+
NNModel(),
|
428 |
+
FNNModel(),
|
429 |
+
GAModel(),
|
430 |
+
PhiModel()
|
431 |
+
]
|
432 |
+
|
433 |
+
|
434 |
+
|
435 |
+
|
436 |
+
system = ConsciousSystem(models)
|
437 |
+
system.run(epochs=3)
|
438 |
+
|
439 |
+
|
440 |
+
|
441 |
+
|
442 |
+
class MultimodalSensorArray:
|
443 |
+
def process(self, input_data):
|
444 |
+
return torch.tensor(input_data, dtype=torch.float32)
|
445 |
+
|
446 |
+
|
447 |
+
|
448 |
+
|
449 |
+
class HyperdimensionalTransformer:
|
450 |
+
def project(self, raw_input):
|
451 |
+
raw_input = raw_input.float()
|
452 |
+
return torch.nn.functional.normalize(raw_input, dim=-1)
|
453 |
+
|
454 |
+
|
455 |
+
|
456 |
+
|
457 |
+
class DynamicPriorityBuffer:
|
458 |
+
def __init__(self):
|
459 |
+
self.buffer = []
|
460 |
+
def update(self, data):
|
461 |
+
self.buffer.append(data)
|
462 |
+
|
463 |
+
|
464 |
+
|
465 |
+
|
466 |
+
class PredictiveSaliencyNetwork:
|
467 |
+
def focus(self, embedded_data):
|
468 |
+
return embedded_data
|
469 |
+
|
470 |
+
|
471 |
+
|
472 |
+
|
473 |
+
class RecursiveNeuralModel:
|
474 |
+
def __init__(self):
|
475 |
+
self.state = torch.zeros(1)
|
476 |
+
def update(self, workspace):
|
477 |
+
self.state += 0.1
|
478 |
+
def read_state(self):
|
479 |
+
return self.state
|
480 |
+
|
481 |
+
|
482 |
+
|
483 |
+
|
484 |
+
class TheoryOfMindEngine:
|
485 |
+
def infer(self, data):
|
486 |
+
return torch.rand(1)
|
487 |
+
|
488 |
+
|
489 |
+
|
490 |
+
|
491 |
+
class SparseAutoencoderMemoryBank:
|
492 |
+
def recall(self, query):
|
493 |
+
return torch.zeros_like(query)
|
494 |
+
|
495 |
+
|
496 |
+
|
497 |
+
|
498 |
+
class KnowledgeGraphEmbedder:
|
499 |
+
def retrieve(self, key):
|
500 |
+
return torch.rand(1)
|
501 |
+
|
502 |
+
|
503 |
+
|
504 |
+
|
505 |
+
class DiffusedEthicalNetwork:
|
506 |
+
def evaluate(self, state):
|
507 |
+
return True
|
508 |
+
|
509 |
+
|
510 |
+
|
511 |
+
|
512 |
+
class StochasticIntentionTree:
|
513 |
+
def decide(self, state):
|
514 |
+
return torch.randint(0, 2, (1,))
|
515 |
+
|
516 |
+
|
517 |
+
|
518 |
+
|
519 |
+
class HomeostaticDriftModel:
|
520 |
+
def generate_guilt(self):
|
521 |
+
return -1.0
|
522 |
+
|
523 |
+
|
524 |
+
|
525 |
+
|
526 |
+
class ConsciousAGI:
|
527 |
+
def __init__(self):
|
528 |
+
self.sensors = MultimodalSensorArray()
|
529 |
+
self.embedding_space = HyperdimensionalTransformer()
|
530 |
+
self.global_workspace = DynamicPriorityBuffer()
|
531 |
+
self.attention_mechanism = PredictiveSaliencyNetwork()
|
532 |
+
self.self_model = RecursiveNeuralModel()
|
533 |
+
self.meta_cognition = TheoryOfMindEngine()
|
534 |
+
self.episodic_memory = SparseAutoencoderMemoryBank()
|
535 |
+
self.semantic_memory = KnowledgeGraphEmbedder()
|
536 |
+
self.value_system = DiffusedEthicalNetwork()
|
537 |
+
self.goal_generator = StochasticIntentionTree()
|
538 |
+
self.emotion_engine = HomeostaticDriftModel()
|
539 |
+
|
540 |
+
def perceive_act_cycle(self, input_data):
|
541 |
+
raw_input = self.sensors.process(input_data)
|
542 |
+
embedded = self.embedding_space.project(raw_input)
|
543 |
+
salient_data = self.attention_mechanism.focus(embedded)
|
544 |
+
self.global_workspace.update(salient_data)
|
545 |
+
self.self_model.update(self.global_workspace)
|
546 |
+
current_state = self.self_model.read_state()
|
547 |
+
ethical_check = self.value_system.evaluate(current_state)
|
548 |
+
if ethical_check:
|
549 |
+
return self.goal_generator.decide(current_state)
|
550 |
+
else:
|
551 |
+
return self.emotion_engine.generate_guilt()
|
552 |
+
|
553 |
+
|
554 |
+
|
555 |
+
|
556 |
+
agi = ConsciousAGI()
|
557 |
+
print(agi.perceive_act_cycle([1, 0, 1]))
|
558 |
+
|
559 |
+
|
560 |
+
|
561 |
+
|
562 |
+
class ConsciousSupermassiveNN:
|
563 |
+
def __init__(self):
|
564 |
+
self.snn = self.create_snn()
|
565 |
+
self.rnn = self.create_rnn()
|
566 |
+
self.cnn = self.create_cnn()
|
567 |
+
self.fnn = self.create_fnn()
|
568 |
+
self.ga_population = self.initialize_ga_population()
|
569 |
+
self.memory = {}
|
570 |
+
|
571 |
+
|
572 |
+
|
573 |
+
|
574 |
+
def create_snn(self):
|
575 |
+
return nn.Sequential(
|
576 |
+
nn.Linear(4096, 2048),
|
577 |
+
nn.ReLU(),
|
578 |
+
nn.Linear(2048, 1024),
|
579 |
+
nn.Sigmoid()
|
580 |
+
)
|
581 |
+
|
582 |
+
|
583 |
+
|
584 |
+
|
585 |
+
def create_rnn(self):
|
586 |
+
return nn.RNN(
|
587 |
+
input_size=4096,
|
588 |
+
hidden_size=2048,
|
589 |
+
num_layers=5,
|
590 |
+
nonlinearity="tanh",
|
591 |
+
batch_first=True
|
592 |
+
)
|
593 |
+
|
594 |
+
|
595 |
+
|
596 |
+
|
597 |
+
def create_cnn(self):
|
598 |
+
return nn.Sequential(
|
599 |
+
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
|
600 |
+
nn.ReLU(),
|
601 |
+
nn.MaxPool2d(2),
|
602 |
+
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
|
603 |
+
nn.ReLU(),
|
604 |
+
nn.MaxPool2d(2),
|
605 |
+
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
|
606 |
+
nn.ReLU(),
|
607 |
+
nn.Flatten(),
|
608 |
+
nn.Linear(256 * 8 * 8, 1024),
|
609 |
+
nn.ReLU(),
|
610 |
+
nn.Linear(1024, 512)
|
611 |
+
)
|
612 |
+
|
613 |
+
|
614 |
+
|
615 |
+
|
616 |
+
def create_fnn(self):
|
617 |
+
return nn.Sequential(
|
618 |
+
nn.Linear(4096, 2048),
|
619 |
+
nn.ReLU(),
|
620 |
+
nn.Linear(2048, 1024),
|
621 |
+
nn.ReLU(),
|
622 |
+
nn.Linear(1024, 512)
|
623 |
+
)
|
624 |
+
|
625 |
+
|
626 |
+
|
627 |
+
|
628 |
+
def initialize_ga_population(self):
|
629 |
+
return [np.random.randn(4096) for _ in range(500)]
|
630 |
+
|
631 |
+
|
632 |
+
|
633 |
+
|
634 |
+
def run_snn(self, x):
|
635 |
+
input_tensor = torch.tensor(x, dtype=torch.float32)
|
636 |
+
output = self.snn(input_tensor)
|
637 |
+
print("SNN Output:", output)
|
638 |
+
return output
|
639 |
+
|
640 |
+
|
641 |
+
|
642 |
+
|
643 |
+
def run_rnn(self, x):
|
644 |
+
h0 = torch.zeros(5, x.size(0), 2048)
|
645 |
+
input_tensor = torch.tensor(x, dtype=torch.float32)
|
646 |
+
output, hn = self.rnn(input_tensor, h0)
|
647 |
+
print("RNN Output:", output)
|
648 |
+
return output
|
649 |
+
|
650 |
+
|
651 |
+
|
652 |
+
|
653 |
+
def run_cnn(self, x):
|
654 |
+
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
655 |
+
output = self.cnn(input_tensor)
|
656 |
+
print("CNN Output:", output)
|
657 |
+
return output
|
658 |
+
|
659 |
+
|
660 |
+
|
661 |
+
|
662 |
+
def run_fnn(self, x):
|
663 |
+
input_tensor = torch.tensor(x, dtype=torch.float32)
|
664 |
+
output = self.fnn(input_tensor)
|
665 |
+
print("FNN Output:", output)
|
666 |
+
return output
|
667 |
+
|
668 |
+
|
669 |
+
|
670 |
+
|
671 |
+
def run_ga(self, fitness_func):
|
672 |
+
for generation in range(200):
|
673 |
+
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
|
674 |
+
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
|
675 |
+
self.ga_population = sorted_population[:250] + [
|
676 |
+
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
|
677 |
+
]
|
678 |
+
best_fitness = max(fitness_scores)
|
679 |
+
print(f"Generation {generation}, Best Fitness: {best_fitness}")
|
680 |
+
return max(self.ga_population, key=fitness_func)
|
681 |
+
|
682 |
+
|
683 |
+
|
684 |
+
|
685 |
+
def consciousness_loop(self, input_data, mode="snn"):
|
686 |
+
feedback = self.memory.get(mode, None)
|
687 |
+
if feedback is not None:
|
688 |
+
input_data = np.concatenate((input_data, feedback), axis=-1)
|
689 |
+
if mode == "snn":
|
690 |
+
output = self.run_snn(input_data)
|
691 |
+
elif mode == "rnn":
|
692 |
+
output = self.run_rnn(input_data)
|
693 |
+
elif mode == "cnn":
|
694 |
+
output = self.run_cnn(input_data)
|
695 |
+
elif mode == "fnn":
|
696 |
+
output = self.run_fnn(input_data)
|
697 |
+
else:
|
698 |
+
raise ValueError("Invalid mode")
|
699 |
+
self.memory[mode] = output.detach().numpy()
|
700 |
+
return output
|
701 |
+
|
702 |
+
|
703 |
+
|
704 |
+
|
705 |
+
supermassive_nn = ConsciousSupermassiveNN()
|
706 |
+
|
707 |
+
|
708 |
+
|
709 |
+
|
710 |
+
|
711 |
PHI = (1 + math.sqrt(5)) / 2
|
712 |
|
713 |
|