Spaces:
Running
Running
Update utils.py
Browse files
utils.py
CHANGED
@@ -62,9 +62,9 @@ SUBMIT_INTRODUCTION = """# Submit on MMEB Leaderboard Introduction
|
|
62 |
[
|
63 |
{
|
64 |
"Model": "<Model Name>",
|
65 |
-
|
66 |
-
"Model Size(B)": 1000,
|
67 |
-
"Data Source": Self-Reported,
|
68 |
"V1-Overall": 50.0,
|
69 |
"I-CLS": 50.0,
|
70 |
"I-QA": 50.0,
|
@@ -79,9 +79,9 @@ SUBMIT_INTRODUCTION = """# Submit on MMEB Leaderboard Introduction
|
|
79 |
[
|
80 |
{
|
81 |
"Model": "<Model Name>",
|
82 |
-
|
83 |
-
"Model Size(B)": 1000,
|
84 |
-
"Data Source": Self-Reported,
|
85 |
"V2-Overall": 50.0,
|
86 |
"V-CLS": 50.0,
|
87 |
"V-QA": 50.0,
|
@@ -124,7 +124,7 @@ def get_df(file="results.jsonl"):
|
|
124 |
df['Model Size(B)'] = df['Model Size(B)'].apply(process_model_size)
|
125 |
for task in TASKS_V1 + TASKS_V2:
|
126 |
if df[task].isnull().any():
|
127 |
-
df[task] = df[task].apply(
|
128 |
df = df.sort_values(by=['V1-Overall'], ascending=False)
|
129 |
df = create_hyperlinked_names(df)
|
130 |
df['Rank'] = range(1, len(df) + 1)
|
@@ -170,9 +170,6 @@ def process_model_size(size):
|
|
170 |
except (ValueError, TypeError):
|
171 |
return 'unknown'
|
172 |
|
173 |
-
def process_unknown_scores(score):
|
174 |
-
return '-' if pd.isna(score) else score
|
175 |
-
|
176 |
def filter_columns_by_tasks(df, selected_tasks=None):
|
177 |
if selected_tasks is None or len(selected_tasks) == 0:
|
178 |
return df[COLUMN_NAMES]
|
|
|
62 |
[
|
63 |
{
|
64 |
"Model": "<Model Name>",
|
65 |
+
"URL": "<Model URL>" or null,
|
66 |
+
"Model Size(B)": 1000 or null,
|
67 |
+
"Data Source": "Self-Reported",
|
68 |
"V1-Overall": 50.0,
|
69 |
"I-CLS": 50.0,
|
70 |
"I-QA": 50.0,
|
|
|
79 |
[
|
80 |
{
|
81 |
"Model": "<Model Name>",
|
82 |
+
"URL": "<Model URL>" or null,
|
83 |
+
"Model Size(B)": 1000 or null,
|
84 |
+
"Data Source": "Self-Reported",
|
85 |
"V2-Overall": 50.0,
|
86 |
"V-CLS": 50.0,
|
87 |
"V-QA": 50.0,
|
|
|
124 |
df['Model Size(B)'] = df['Model Size(B)'].apply(process_model_size)
|
125 |
for task in TASKS_V1 + TASKS_V2:
|
126 |
if df[task].isnull().any():
|
127 |
+
df[task] = df[task].apply(lambda score: '-' if pd.isna(score) else score)
|
128 |
df = df.sort_values(by=['V1-Overall'], ascending=False)
|
129 |
df = create_hyperlinked_names(df)
|
130 |
df['Rank'] = range(1, len(df) + 1)
|
|
|
170 |
except (ValueError, TypeError):
|
171 |
return 'unknown'
|
172 |
|
|
|
|
|
|
|
173 |
def filter_columns_by_tasks(df, selected_tasks=None):
|
174 |
if selected_tasks is None or len(selected_tasks) == 0:
|
175 |
return df[COLUMN_NAMES]
|