MINGYISU commited on
Commit
4ed87c1
·
verified ·
1 Parent(s): 59091a2

Update utils.py

Browse files
Files changed (1) hide show
  1. utils.py +7 -10
utils.py CHANGED
@@ -62,9 +62,9 @@ SUBMIT_INTRODUCTION = """# Submit on MMEB Leaderboard Introduction
62
  [
63
  {
64
  "Model": "<Model Name>",
65
- <Optional>"URL": "<Model URL>",
66
- "Model Size(B)": 1000,
67
- "Data Source": Self-Reported,
68
  "V1-Overall": 50.0,
69
  "I-CLS": 50.0,
70
  "I-QA": 50.0,
@@ -79,9 +79,9 @@ SUBMIT_INTRODUCTION = """# Submit on MMEB Leaderboard Introduction
79
  [
80
  {
81
  "Model": "<Model Name>",
82
- <Optional>"URL": "<Model URL>",
83
- "Model Size(B)": 1000,
84
- "Data Source": Self-Reported,
85
  "V2-Overall": 50.0,
86
  "V-CLS": 50.0,
87
  "V-QA": 50.0,
@@ -124,7 +124,7 @@ def get_df(file="results.jsonl"):
124
  df['Model Size(B)'] = df['Model Size(B)'].apply(process_model_size)
125
  for task in TASKS_V1 + TASKS_V2:
126
  if df[task].isnull().any():
127
- df[task] = df[task].apply(process_unknown_scores)
128
  df = df.sort_values(by=['V1-Overall'], ascending=False)
129
  df = create_hyperlinked_names(df)
130
  df['Rank'] = range(1, len(df) + 1)
@@ -170,9 +170,6 @@ def process_model_size(size):
170
  except (ValueError, TypeError):
171
  return 'unknown'
172
 
173
- def process_unknown_scores(score):
174
- return '-' if pd.isna(score) else score
175
-
176
  def filter_columns_by_tasks(df, selected_tasks=None):
177
  if selected_tasks is None or len(selected_tasks) == 0:
178
  return df[COLUMN_NAMES]
 
62
  [
63
  {
64
  "Model": "<Model Name>",
65
+ "URL": "<Model URL>" or null,
66
+ "Model Size(B)": 1000 or null,
67
+ "Data Source": "Self-Reported",
68
  "V1-Overall": 50.0,
69
  "I-CLS": 50.0,
70
  "I-QA": 50.0,
 
79
  [
80
  {
81
  "Model": "<Model Name>",
82
+ "URL": "<Model URL>" or null,
83
+ "Model Size(B)": 1000 or null,
84
+ "Data Source": "Self-Reported",
85
  "V2-Overall": 50.0,
86
  "V-CLS": 50.0,
87
  "V-QA": 50.0,
 
124
  df['Model Size(B)'] = df['Model Size(B)'].apply(process_model_size)
125
  for task in TASKS_V1 + TASKS_V2:
126
  if df[task].isnull().any():
127
+ df[task] = df[task].apply(lambda score: '-' if pd.isna(score) else score)
128
  df = df.sort_values(by=['V1-Overall'], ascending=False)
129
  df = create_hyperlinked_names(df)
130
  df['Rank'] = range(1, len(df) + 1)
 
170
  except (ValueError, TypeError):
171
  return 'unknown'
172
 
 
 
 
173
  def filter_columns_by_tasks(df, selected_tasks=None):
174
  if selected_tasks is None or len(selected_tasks) == 0:
175
  return df[COLUMN_NAMES]