Spaces:
Running
Running
Update utils.py
Browse files
utils.py
CHANGED
@@ -39,7 +39,7 @@ This comprehensive suite enables robust evaluation of multimodal embedding model
|
|
39 |
| [**🤗Hugging Face**](https://huggingface.co/datasets/TIGER-Lab/MMEB-V2) |
|
40 |
"""
|
41 |
|
42 |
-
TABLE_INTRODUCTION = """"""
|
43 |
|
44 |
LEADERBOARD_INFO = """
|
45 |
## Dataset Summary
|
@@ -122,6 +122,9 @@ def create_hyperlinked_names(df):
|
|
122 |
def get_df(file="results.jsonl"):
|
123 |
df = pd.read_json(file, orient='records', lines=True)
|
124 |
df['Model Size(B)'] = df['Model Size(B)'].apply(process_model_size)
|
|
|
|
|
|
|
125 |
df = df.sort_values(by=['V1-Overall'], ascending=False)
|
126 |
df = create_hyperlinked_names(df)
|
127 |
df['Rank'] = range(1, len(df) + 1)
|
@@ -167,6 +170,8 @@ def process_model_size(size):
|
|
167 |
except (ValueError, TypeError):
|
168 |
return 'unknown'
|
169 |
|
|
|
|
|
170 |
|
171 |
def filter_columns_by_tasks(df, selected_tasks=None):
|
172 |
if selected_tasks is None or len(selected_tasks) == 0:
|
|
|
39 |
| [**🤗Hugging Face**](https://huggingface.co/datasets/TIGER-Lab/MMEB-V2) |
|
40 |
"""
|
41 |
|
42 |
+
TABLE_INTRODUCTION = """Models are ranked based on V1-Overall."""
|
43 |
|
44 |
LEADERBOARD_INFO = """
|
45 |
## Dataset Summary
|
|
|
122 |
def get_df(file="results.jsonl"):
|
123 |
df = pd.read_json(file, orient='records', lines=True)
|
124 |
df['Model Size(B)'] = df['Model Size(B)'].apply(process_model_size)
|
125 |
+
for task in TASKS_V1 + TASKS_V2:
|
126 |
+
if df[task].isnull().any():
|
127 |
+
df[task] = df[task].apply(process_unknown_scores)
|
128 |
df = df.sort_values(by=['V1-Overall'], ascending=False)
|
129 |
df = create_hyperlinked_names(df)
|
130 |
df['Rank'] = range(1, len(df) + 1)
|
|
|
170 |
except (ValueError, TypeError):
|
171 |
return 'unknown'
|
172 |
|
173 |
+
def process_unknown_scores(score):
|
174 |
+
return '-' if pd.isna(score) else score
|
175 |
|
176 |
def filter_columns_by_tasks(df, selected_tasks=None):
|
177 |
if selected_tasks is None or len(selected_tasks) == 0:
|