webui / modules /xpu_specific.py
SunjinSunjin's picture
Upload folder using huggingface_hub
2e82449 verified
# from modules import shared
# from modules.sd_hijack_utils import CondFunc
#
# has_ipex = False
# try:
# import torch
# import intel_extension_for_pytorch as ipex # noqa: F401
# has_ipex = True
# except Exception:
# pass
#
#
# def check_for_xpu():
# return has_ipex and hasattr(torch, 'xpu') and torch.xpu.is_available()
#
#
# def get_xpu_device_string():
# if shared.cmd_opts.device_id is not None:
# return f"xpu:{shared.cmd_opts.device_id}"
# return "xpu"
#
#
# def torch_xpu_gc():
# with torch.xpu.device(get_xpu_device_string()):
# torch.xpu.empty_cache()
#
#
# has_xpu = check_for_xpu()
#
#
# # Arc GPU cannot allocate a single block larger than 4GB: https://github.com/intel/compute-runtime/issues/627
# # Here we implement a slicing algorithm to split large batch size into smaller chunks,
# # so that SDPA of each chunk wouldn't require any allocation larger than ARC_SINGLE_ALLOCATION_LIMIT.
# # The heuristic limit (TOTAL_VRAM // 8) is tuned for Intel Arc A770 16G and Arc A750 8G,
# # which is the best trade-off between VRAM usage and performance.
# ARC_SINGLE_ALLOCATION_LIMIT = {}
# orig_sdp_attn_func = torch.nn.functional.scaled_dot_product_attention
# def torch_xpu_scaled_dot_product_attention(
# query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, *args, **kwargs
# ):
# # cast to same dtype first
# key = key.to(query.dtype)
# value = value.to(query.dtype)
# if attn_mask is not None and attn_mask.dtype != torch.bool:
# attn_mask = attn_mask.to(query.dtype)
#
# N = query.shape[:-2] # Batch size
# L = query.size(-2) # Target sequence length
# E = query.size(-1) # Embedding dimension of the query and key
# S = key.size(-2) # Source sequence length
# Ev = value.size(-1) # Embedding dimension of the value
#
# total_batch_size = torch.numel(torch.empty(N))
# device_id = query.device.index
# if device_id not in ARC_SINGLE_ALLOCATION_LIMIT:
# ARC_SINGLE_ALLOCATION_LIMIT[device_id] = min(torch.xpu.get_device_properties(device_id).total_memory // 8, 4 * 1024 * 1024 * 1024)
# batch_size_limit = max(1, ARC_SINGLE_ALLOCATION_LIMIT[device_id] // (L * S * query.element_size()))
#
# if total_batch_size <= batch_size_limit:
# return orig_sdp_attn_func(
# query,
# key,
# value,
# attn_mask,
# dropout_p,
# is_causal,
# *args, **kwargs
# )
#
# query = torch.reshape(query, (-1, L, E))
# key = torch.reshape(key, (-1, S, E))
# value = torch.reshape(value, (-1, S, Ev))
# if attn_mask is not None:
# attn_mask = attn_mask.view(-1, L, S)
# chunk_count = (total_batch_size + batch_size_limit - 1) // batch_size_limit
# outputs = []
# for i in range(chunk_count):
# attn_mask_chunk = (
# None
# if attn_mask is None
# else attn_mask[i * batch_size_limit : (i + 1) * batch_size_limit, :, :]
# )
# chunk_output = orig_sdp_attn_func(
# query[i * batch_size_limit : (i + 1) * batch_size_limit, :, :],
# key[i * batch_size_limit : (i + 1) * batch_size_limit, :, :],
# value[i * batch_size_limit : (i + 1) * batch_size_limit, :, :],
# attn_mask_chunk,
# dropout_p,
# is_causal,
# *args, **kwargs
# )
# outputs.append(chunk_output)
# result = torch.cat(outputs, dim=0)
# return torch.reshape(result, (*N, L, Ev))
#
#
# def is_xpu_device(device: str | torch.device = None):
# if device is None:
# return False
# if isinstance(device, str):
# return device.startswith("xpu")
# return device.type == "xpu"
#
#
# if has_xpu:
# try:
# # torch.Generator supports "xpu" device since 2.1
# torch.Generator("xpu")
# except RuntimeError:
# # W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device (for torch < 2.1)
# CondFunc('torch.Generator',
# lambda orig_func, device=None: torch.xpu.Generator(device),
# lambda orig_func, device=None: is_xpu_device(device))
#
# # W/A for some OPs that could not handle different input dtypes
# CondFunc('torch.nn.functional.layer_norm',
# lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
# orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs),
# lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
# weight is not None and input.dtype != weight.data.dtype)
# CondFunc('torch.nn.modules.GroupNorm.forward',
# lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
# lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
# CondFunc('torch.nn.modules.linear.Linear.forward',
# lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
# lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
# CondFunc('torch.nn.modules.conv.Conv2d.forward',
# lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
# lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
# CondFunc('torch.bmm',
# lambda orig_func, input, mat2, out=None: orig_func(input.to(mat2.dtype), mat2, out=out),
# lambda orig_func, input, mat2, out=None: input.dtype != mat2.dtype)
# CondFunc('torch.cat',
# lambda orig_func, tensors, dim=0, out=None: orig_func([t.to(tensors[0].dtype) for t in tensors], dim=dim, out=out),
# lambda orig_func, tensors, dim=0, out=None: not all(t.dtype == tensors[0].dtype for t in tensors))
# CondFunc('torch.nn.functional.scaled_dot_product_attention',
# lambda orig_func, *args, **kwargs: torch_xpu_scaled_dot_product_attention(*args, **kwargs),
# lambda orig_func, query, *args, **kwargs: query.is_xpu)