Spaces:
Runtime error
Runtime error
# from modules import shared | |
# from modules.sd_hijack_utils import CondFunc | |
# | |
# has_ipex = False | |
# try: | |
# import torch | |
# import intel_extension_for_pytorch as ipex # noqa: F401 | |
# has_ipex = True | |
# except Exception: | |
# pass | |
# | |
# | |
# def check_for_xpu(): | |
# return has_ipex and hasattr(torch, 'xpu') and torch.xpu.is_available() | |
# | |
# | |
# def get_xpu_device_string(): | |
# if shared.cmd_opts.device_id is not None: | |
# return f"xpu:{shared.cmd_opts.device_id}" | |
# return "xpu" | |
# | |
# | |
# def torch_xpu_gc(): | |
# with torch.xpu.device(get_xpu_device_string()): | |
# torch.xpu.empty_cache() | |
# | |
# | |
# has_xpu = check_for_xpu() | |
# | |
# | |
# # Arc GPU cannot allocate a single block larger than 4GB: https://github.com/intel/compute-runtime/issues/627 | |
# # Here we implement a slicing algorithm to split large batch size into smaller chunks, | |
# # so that SDPA of each chunk wouldn't require any allocation larger than ARC_SINGLE_ALLOCATION_LIMIT. | |
# # The heuristic limit (TOTAL_VRAM // 8) is tuned for Intel Arc A770 16G and Arc A750 8G, | |
# # which is the best trade-off between VRAM usage and performance. | |
# ARC_SINGLE_ALLOCATION_LIMIT = {} | |
# orig_sdp_attn_func = torch.nn.functional.scaled_dot_product_attention | |
# def torch_xpu_scaled_dot_product_attention( | |
# query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, *args, **kwargs | |
# ): | |
# # cast to same dtype first | |
# key = key.to(query.dtype) | |
# value = value.to(query.dtype) | |
# if attn_mask is not None and attn_mask.dtype != torch.bool: | |
# attn_mask = attn_mask.to(query.dtype) | |
# | |
# N = query.shape[:-2] # Batch size | |
# L = query.size(-2) # Target sequence length | |
# E = query.size(-1) # Embedding dimension of the query and key | |
# S = key.size(-2) # Source sequence length | |
# Ev = value.size(-1) # Embedding dimension of the value | |
# | |
# total_batch_size = torch.numel(torch.empty(N)) | |
# device_id = query.device.index | |
# if device_id not in ARC_SINGLE_ALLOCATION_LIMIT: | |
# ARC_SINGLE_ALLOCATION_LIMIT[device_id] = min(torch.xpu.get_device_properties(device_id).total_memory // 8, 4 * 1024 * 1024 * 1024) | |
# batch_size_limit = max(1, ARC_SINGLE_ALLOCATION_LIMIT[device_id] // (L * S * query.element_size())) | |
# | |
# if total_batch_size <= batch_size_limit: | |
# return orig_sdp_attn_func( | |
# query, | |
# key, | |
# value, | |
# attn_mask, | |
# dropout_p, | |
# is_causal, | |
# *args, **kwargs | |
# ) | |
# | |
# query = torch.reshape(query, (-1, L, E)) | |
# key = torch.reshape(key, (-1, S, E)) | |
# value = torch.reshape(value, (-1, S, Ev)) | |
# if attn_mask is not None: | |
# attn_mask = attn_mask.view(-1, L, S) | |
# chunk_count = (total_batch_size + batch_size_limit - 1) // batch_size_limit | |
# outputs = [] | |
# for i in range(chunk_count): | |
# attn_mask_chunk = ( | |
# None | |
# if attn_mask is None | |
# else attn_mask[i * batch_size_limit : (i + 1) * batch_size_limit, :, :] | |
# ) | |
# chunk_output = orig_sdp_attn_func( | |
# query[i * batch_size_limit : (i + 1) * batch_size_limit, :, :], | |
# key[i * batch_size_limit : (i + 1) * batch_size_limit, :, :], | |
# value[i * batch_size_limit : (i + 1) * batch_size_limit, :, :], | |
# attn_mask_chunk, | |
# dropout_p, | |
# is_causal, | |
# *args, **kwargs | |
# ) | |
# outputs.append(chunk_output) | |
# result = torch.cat(outputs, dim=0) | |
# return torch.reshape(result, (*N, L, Ev)) | |
# | |
# | |
# def is_xpu_device(device: str | torch.device = None): | |
# if device is None: | |
# return False | |
# if isinstance(device, str): | |
# return device.startswith("xpu") | |
# return device.type == "xpu" | |
# | |
# | |
# if has_xpu: | |
# try: | |
# # torch.Generator supports "xpu" device since 2.1 | |
# torch.Generator("xpu") | |
# except RuntimeError: | |
# # W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device (for torch < 2.1) | |
# CondFunc('torch.Generator', | |
# lambda orig_func, device=None: torch.xpu.Generator(device), | |
# lambda orig_func, device=None: is_xpu_device(device)) | |
# | |
# # W/A for some OPs that could not handle different input dtypes | |
# CondFunc('torch.nn.functional.layer_norm', | |
# lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: | |
# orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs), | |
# lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: | |
# weight is not None and input.dtype != weight.data.dtype) | |
# CondFunc('torch.nn.modules.GroupNorm.forward', | |
# lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)), | |
# lambda orig_func, self, input: input.dtype != self.weight.data.dtype) | |
# CondFunc('torch.nn.modules.linear.Linear.forward', | |
# lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)), | |
# lambda orig_func, self, input: input.dtype != self.weight.data.dtype) | |
# CondFunc('torch.nn.modules.conv.Conv2d.forward', | |
# lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)), | |
# lambda orig_func, self, input: input.dtype != self.weight.data.dtype) | |
# CondFunc('torch.bmm', | |
# lambda orig_func, input, mat2, out=None: orig_func(input.to(mat2.dtype), mat2, out=out), | |
# lambda orig_func, input, mat2, out=None: input.dtype != mat2.dtype) | |
# CondFunc('torch.cat', | |
# lambda orig_func, tensors, dim=0, out=None: orig_func([t.to(tensors[0].dtype) for t in tensors], dim=dim, out=out), | |
# lambda orig_func, tensors, dim=0, out=None: not all(t.dtype == tensors[0].dtype for t in tensors)) | |
# CondFunc('torch.nn.functional.scaled_dot_product_attention', | |
# lambda orig_func, *args, **kwargs: torch_xpu_scaled_dot_product_attention(*args, **kwargs), | |
# lambda orig_func, query, *args, **kwargs: query.is_xpu) | |