# from modules import shared # from modules.sd_hijack_utils import CondFunc # # has_ipex = False # try: # import torch # import intel_extension_for_pytorch as ipex # noqa: F401 # has_ipex = True # except Exception: # pass # # # def check_for_xpu(): # return has_ipex and hasattr(torch, 'xpu') and torch.xpu.is_available() # # # def get_xpu_device_string(): # if shared.cmd_opts.device_id is not None: # return f"xpu:{shared.cmd_opts.device_id}" # return "xpu" # # # def torch_xpu_gc(): # with torch.xpu.device(get_xpu_device_string()): # torch.xpu.empty_cache() # # # has_xpu = check_for_xpu() # # # # Arc GPU cannot allocate a single block larger than 4GB: https://github.com/intel/compute-runtime/issues/627 # # Here we implement a slicing algorithm to split large batch size into smaller chunks, # # so that SDPA of each chunk wouldn't require any allocation larger than ARC_SINGLE_ALLOCATION_LIMIT. # # The heuristic limit (TOTAL_VRAM // 8) is tuned for Intel Arc A770 16G and Arc A750 8G, # # which is the best trade-off between VRAM usage and performance. # ARC_SINGLE_ALLOCATION_LIMIT = {} # orig_sdp_attn_func = torch.nn.functional.scaled_dot_product_attention # def torch_xpu_scaled_dot_product_attention( # query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, *args, **kwargs # ): # # cast to same dtype first # key = key.to(query.dtype) # value = value.to(query.dtype) # if attn_mask is not None and attn_mask.dtype != torch.bool: # attn_mask = attn_mask.to(query.dtype) # # N = query.shape[:-2] # Batch size # L = query.size(-2) # Target sequence length # E = query.size(-1) # Embedding dimension of the query and key # S = key.size(-2) # Source sequence length # Ev = value.size(-1) # Embedding dimension of the value # # total_batch_size = torch.numel(torch.empty(N)) # device_id = query.device.index # if device_id not in ARC_SINGLE_ALLOCATION_LIMIT: # ARC_SINGLE_ALLOCATION_LIMIT[device_id] = min(torch.xpu.get_device_properties(device_id).total_memory // 8, 4 * 1024 * 1024 * 1024) # batch_size_limit = max(1, ARC_SINGLE_ALLOCATION_LIMIT[device_id] // (L * S * query.element_size())) # # if total_batch_size <= batch_size_limit: # return orig_sdp_attn_func( # query, # key, # value, # attn_mask, # dropout_p, # is_causal, # *args, **kwargs # ) # # query = torch.reshape(query, (-1, L, E)) # key = torch.reshape(key, (-1, S, E)) # value = torch.reshape(value, (-1, S, Ev)) # if attn_mask is not None: # attn_mask = attn_mask.view(-1, L, S) # chunk_count = (total_batch_size + batch_size_limit - 1) // batch_size_limit # outputs = [] # for i in range(chunk_count): # attn_mask_chunk = ( # None # if attn_mask is None # else attn_mask[i * batch_size_limit : (i + 1) * batch_size_limit, :, :] # ) # chunk_output = orig_sdp_attn_func( # query[i * batch_size_limit : (i + 1) * batch_size_limit, :, :], # key[i * batch_size_limit : (i + 1) * batch_size_limit, :, :], # value[i * batch_size_limit : (i + 1) * batch_size_limit, :, :], # attn_mask_chunk, # dropout_p, # is_causal, # *args, **kwargs # ) # outputs.append(chunk_output) # result = torch.cat(outputs, dim=0) # return torch.reshape(result, (*N, L, Ev)) # # # def is_xpu_device(device: str | torch.device = None): # if device is None: # return False # if isinstance(device, str): # return device.startswith("xpu") # return device.type == "xpu" # # # if has_xpu: # try: # # torch.Generator supports "xpu" device since 2.1 # torch.Generator("xpu") # except RuntimeError: # # W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device (for torch < 2.1) # CondFunc('torch.Generator', # lambda orig_func, device=None: torch.xpu.Generator(device), # lambda orig_func, device=None: is_xpu_device(device)) # # # W/A for some OPs that could not handle different input dtypes # CondFunc('torch.nn.functional.layer_norm', # lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: # orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs), # lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: # weight is not None and input.dtype != weight.data.dtype) # CondFunc('torch.nn.modules.GroupNorm.forward', # lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)), # lambda orig_func, self, input: input.dtype != self.weight.data.dtype) # CondFunc('torch.nn.modules.linear.Linear.forward', # lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)), # lambda orig_func, self, input: input.dtype != self.weight.data.dtype) # CondFunc('torch.nn.modules.conv.Conv2d.forward', # lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)), # lambda orig_func, self, input: input.dtype != self.weight.data.dtype) # CondFunc('torch.bmm', # lambda orig_func, input, mat2, out=None: orig_func(input.to(mat2.dtype), mat2, out=out), # lambda orig_func, input, mat2, out=None: input.dtype != mat2.dtype) # CondFunc('torch.cat', # lambda orig_func, tensors, dim=0, out=None: orig_func([t.to(tensors[0].dtype) for t in tensors], dim=dim, out=out), # lambda orig_func, tensors, dim=0, out=None: not all(t.dtype == tensors[0].dtype for t in tensors)) # CondFunc('torch.nn.functional.scaled_dot_product_attention', # lambda orig_func, *args, **kwargs: torch_xpu_scaled_dot_product_attention(*args, **kwargs), # lambda orig_func, query, *args, **kwargs: query.is_xpu)