File size: 6,024 Bytes
73c6b98 19eb6d4 73c6b98 19eb6d4 c68a936 19eb6d4 c68a936 19eb6d4 c68a936 19eb6d4 73c6b98 19eb6d4 73c6b98 a80b9b2 19eb6d4 73c6b98 19eb6d4 73c6b98 19eb6d4 c68a936 19eb6d4 c68a936 19eb6d4 c68a936 73c6b98 19eb6d4 73c6b98 a80b9b2 19eb6d4 73c6b98 19eb6d4 73c6b98 a80b9b2 73c6b98 a80b9b2 c68a936 19eb6d4 73c6b98 c68a936 73c6b98 68578b0 73c6b98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import gradio as gr
from transformers import pipeline
import numpy as np
import pandas as pd
import re
from pydub import AudioSegment
from pydub.generators import Sine
import io
MODEL_NAME = "openai/whisper-large-v3"
BATCH_SIZE = 8
# device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
# device=device,
)
arabic_bad_Words = pd.read_csv("arabic_bad_words_dataset.csv")
english_bad_Words = pd.read_csv("english_bad_words_dataset.csv")
def clean_text(text):
# Use regex to remove special characters, punctuation, and spaces around words
cleaned_text = re.sub(r'^[\s\W_]+|[\s\W_]+$', '', text)
return cleaned_text
def classifier(word_list_with_timestamp, language):
if language == "English":
list_to_search = set(english_bad_Words["words"])
else:
list_to_search = set(english_bad_Words["words"])
foul_words = []
negative_timestamps = []
for item in word_list_with_timestamp:
word = clean_text(item['text'])
if word in list_to_search:
if word not in foul_words:
foul_words.append(word)
negative_timestamps.append(item['timestamp'])
return [foul_words, negative_timestamps]
def generate_bleep(duration_ms, frequency=1000):
sine_wave = Sine(frequency)
bleep = sine_wave.to_audio_segment(duration=duration_ms)
return bleep
def mute_audio_range(audio_filepath, ranges, bleep_frequency=800):
audio = AudioSegment.from_file(audio_filepath)
for range in ranges:
start_time = range[0] - 0.1
end_time = range[-1] + 0.1
start_ms = start_time * 1000 # pydub works with milliseconds
end_ms = end_time * 1000
duration_ms = end_ms - start_ms
# Generate the bleep sound
bleep_sound = generate_bleep(duration_ms, bleep_frequency)
# Combine the original audio with the bleep sound
audio = audio[:start_ms] + bleep_sound + audio[end_ms:]
return audio
def format_output_to_list(data):
formatted_list = "\n".join([f"{item['timestamp'][0]}s - {item['timestamp'][1]}s \t : {item['text']}" for item in data])
return formatted_list
def transcribe(input_audio, audio_language, task, timestamp_type):
if input_audio is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
if timestamp_type == "sentence":
timestamp_type = True
else:
timestamp_type = "word"
output = pipe(input_audio, batch_size=BATCH_SIZE, return_timestamps=timestamp_type, generate_kwargs={"task": task})
text = output['text']
timestamps = format_output_to_list(output['chunks'])
foul_words_list, negative_timestamps = classifier(output['chunks'], audio_language)
foul_words_list = ", ".join(foul_words_list)
audio_output = mute_audio_range(input_audio, negative_timestamps)
output_path = "output_audio.wav"
audio_output.export(output_path, format="wav")
return [text, timestamps, foul_words_list, output_path]
examples = [
["arabic_english_audios/audios/arabic_audio_1.wav", 'Arabic', 'transcribe', 'word'],
["arabic_english_audios/audios/arabic_audio_2.wav", 'Arabic', 'transcribe', 'word'],
["arabic_english_audios/audios/arabic_audio_3.wav", 'Arabic', 'transcribe', 'word'],
["arabic_english_audios/audios/arabic_audio_4.wav", 'Arabic', 'transcribe', 'word'],
["arabic_english_audios/audios/arabic_hate_audio_1.mp3", 'Arabic', 'transcribe', 'word'],
["arabic_english_audios/audios/arabic_hate_audio_2.mp3", 'Arabic', 'transcribe', 'word'],
["arabic_english_audios/audios/arabic_hate_audio_3.mp3", 'Arabic', 'transcribe', 'word'],
["arabic_english_audios/audios/english_audio_1.wav", 'English', 'transcribe', 'word'],
["arabic_english_audios/audios/english_audio_2.mp3", 'English', 'transcribe', 'word'],
["arabic_english_audios/audios/english_audio_3.mp3", 'English', 'transcribe', 'word'],
["arabic_english_audios/audios/english_audio_4.mp3", 'English', 'transcribe', 'word'],
["arabic_english_audios/audios/english_audio_5.mp3", 'English', 'transcribe', 'word'],
["arabic_english_audios/audios/english_audio_6.wav", 'English', 'transcribe', 'word']
]
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.HTML("<h2 style='text-align: center;'>Transcribing Audio with Timestamps using whisper-large-v3</h2>")
# gr.Markdown("")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(sources=["upload", 'microphone'], type="filepath", label="Audio file")
audio_language = gr.Radio(["Arabic", "English"], label="Audio Language")
task = gr.Radio(["transcribe", "translate"], label="Task")
timestamp_type = gr.Radio(["sentence", "word"], label="Timestamp Type")
with gr.Row():
clear_button = gr.ClearButton(value="Clear")
submit_button = gr.Button("Submit", variant="primary", )
with gr.Column():
transcript_output = gr.Text(label="Transcript")
timestamp_output = gr.Text(label="Timestamps")
foul_words_output = gr.Text(label="Foul words in Audio")
output_audio = gr.Audio(label="Output Audio")
examples = gr.Examples(examples, inputs=[audio_input, audio_language, task, timestamp_type], outputs=[transcript_output, timestamp_output, foul_words_output, output_audio], fn=transcribe, examples_per_page=20)
submit_button.click(fn=transcribe, inputs=[audio_input, audio_language, task, timestamp_type], outputs=[transcript_output, timestamp_output, foul_words_output, output_audio])
clear_button.add([audio_input, audio_language, task, timestamp_type, transcript_output, timestamp_output, foul_words_output, output_audio])
if __name__ == "__main__":
demo.launch()
|