Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,10 @@ import gradio as gr
|
|
2 |
from transformers import pipeline
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
-
|
|
|
|
|
|
|
6 |
|
7 |
MODEL_NAME = "openai/whisper-large-v3"
|
8 |
BATCH_SIZE = 8
|
@@ -15,14 +18,62 @@ pipe = pipeline(
|
|
15 |
# device=device,
|
16 |
)
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def format_output_to_list(data):
|
21 |
formatted_list = "\n".join([f"{item['timestamp'][0]}s - {item['timestamp'][1]}s \t : {item['text']}" for item in data])
|
22 |
return formatted_list
|
23 |
|
24 |
-
def transcribe(
|
25 |
-
if
|
26 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
27 |
|
28 |
if timestamp_type == "sentence":
|
@@ -30,33 +81,42 @@ def transcribe(inputs, task, timestamp_type):
|
|
30 |
else:
|
31 |
timestamp_type = "word"
|
32 |
|
33 |
-
output = pipe(
|
34 |
text = output['text']
|
|
|
35 |
timestamps = format_output_to_list(output['chunks'])
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
examples = [
|
39 |
-
["arabic_english_audios/audios/arabic_audio_1.wav"],
|
40 |
-
["arabic_english_audios/audios/arabic_audio_2.wav"],
|
41 |
-
["arabic_english_audios/audios/arabic_audio_3.wav"],
|
42 |
-
["arabic_english_audios/audios/arabic_audio_4.wav"],
|
43 |
-
["arabic_english_audios/audios/arabic_hate_audio_1.mp3"],
|
44 |
-
["arabic_english_audios/audios/arabic_hate_audio_2.mp3"],
|
45 |
-
["arabic_english_audios/audios/arabic_hate_audio_3.mp3"],
|
46 |
-
["arabic_english_audios/audios/english_audio_1.wav"],
|
47 |
-
["arabic_english_audios/audios/english_audio_2.mp3"],
|
48 |
-
["arabic_english_audios/audios/english_audio_3.mp3"],
|
49 |
-
["arabic_english_audios/audios/english_audio_4.mp3"],
|
50 |
-
["arabic_english_audios/audios/english_audio_5.mp3"],
|
51 |
-
["arabic_english_audios/audios/english_audio_6.wav"]
|
52 |
]
|
53 |
|
54 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
55 |
gr.HTML("<h2 style='text-align: center;'>Transcribing Audio with Timestamps using whisper-large-v3</h2>")
|
56 |
-
gr.Markdown("")
|
57 |
with gr.Row():
|
58 |
with gr.Column():
|
59 |
audio_input = gr.Audio(sources=["upload", 'microphone'], type="filepath", label="Audio file")
|
|
|
60 |
task = gr.Radio(["transcribe", "translate"], label="Task")
|
61 |
timestamp_type = gr.Radio(["sentence", "word"], label="Timestamp Type")
|
62 |
with gr.Row():
|
@@ -66,11 +126,13 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
66 |
with gr.Column():
|
67 |
transcript_output = gr.Text(label="Transcript")
|
68 |
timestamp_output = gr.Text(label="Timestamps")
|
|
|
|
|
69 |
|
70 |
-
examples = gr.Examples(examples, inputs=[audio_input, task, timestamp_type], outputs=[transcript_output, timestamp_output], fn=transcribe, examples_per_page=20)
|
71 |
|
72 |
-
submit_button.click(fn=transcribe, inputs=[audio_input, task, timestamp_type], outputs=[transcript_output, timestamp_output])
|
73 |
-
clear_button.add([audio_input, task, timestamp_type, transcript_output, timestamp_output])
|
74 |
|
75 |
|
76 |
if __name__ == "__main__":
|
|
|
2 |
from transformers import pipeline
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
+
import re
|
6 |
+
from pydub import AudioSegment
|
7 |
+
from pydub.generators import Sine
|
8 |
+
import io
|
9 |
|
10 |
MODEL_NAME = "openai/whisper-large-v3"
|
11 |
BATCH_SIZE = 8
|
|
|
18 |
# device=device,
|
19 |
)
|
20 |
|
21 |
+
arabic_bad_Words = pd.read_csv("arabic_bad_words_dataset.csv")
|
22 |
+
english_bad_Words = pd.read_csv("english_bad_words_dataset.csv")
|
23 |
+
|
24 |
+
|
25 |
+
def clean_text(text):
|
26 |
+
# Use regex to remove special characters, punctuation, and spaces around words
|
27 |
+
cleaned_text = re.sub(r'^[\s\W_]+|[\s\W_]+$', '', text)
|
28 |
+
return cleaned_text
|
29 |
+
|
30 |
+
def classifier(word_list_with_timestamp, language):
|
31 |
+
if language == "English":
|
32 |
+
list_to_search = set(english_bad_Words["words"])
|
33 |
+
|
34 |
+
else:
|
35 |
+
list_to_search = set(english_bad_Words["words"])
|
36 |
+
|
37 |
+
output = []
|
38 |
+
negative_timestamps = []
|
39 |
+
for item in word_list_with_timestamp:
|
40 |
+
word = clean_text(item['text'])
|
41 |
+
if word in list_to_search:
|
42 |
+
output.append((item['text'], "negative"))
|
43 |
+
negative_timestamps.append(item['timestamp'])
|
44 |
+
else:
|
45 |
+
output.append((item['text'], "positive"))
|
46 |
+
return [output, negative_timestamps]
|
47 |
+
|
48 |
+
def generate_bleep(duration_ms, frequency=1000):
|
49 |
+
sine_wave = Sine(frequency)
|
50 |
+
bleep = sine_wave.to_audio_segment(duration=duration_ms)
|
51 |
+
return bleep
|
52 |
+
|
53 |
+
def mute_audio_range(audio_filepath, ranges, bleep_frequency=800):
|
54 |
+
audio = AudioSegment.from_file(audio_filepath)
|
55 |
+
|
56 |
+
for range in ranges:
|
57 |
+
start_time = range[0] - 0.1
|
58 |
+
end_time = range[-1] + 0.1
|
59 |
+
start_ms = start_time * 1000 # pydub works with milliseconds
|
60 |
+
end_ms = end_time * 1000
|
61 |
+
duration_ms = end_ms - start_ms
|
62 |
+
|
63 |
+
# Generate the bleep sound
|
64 |
+
bleep_sound = generate_bleep(duration_ms, bleep_frequency)
|
65 |
+
|
66 |
+
# Combine the original audio with the bleep sound
|
67 |
+
audio = audio[:start_ms] + bleep_sound + audio[end_ms:]
|
68 |
+
|
69 |
+
return audio
|
70 |
|
71 |
def format_output_to_list(data):
|
72 |
formatted_list = "\n".join([f"{item['timestamp'][0]}s - {item['timestamp'][1]}s \t : {item['text']}" for item in data])
|
73 |
return formatted_list
|
74 |
|
75 |
+
def transcribe(input_audio, audio_language, task, timestamp_type):
|
76 |
+
if input_audio is None:
|
77 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
78 |
|
79 |
if timestamp_type == "sentence":
|
|
|
81 |
else:
|
82 |
timestamp_type = "word"
|
83 |
|
84 |
+
output = pipe(input_audio, batch_size=BATCH_SIZE, return_timestamps=timestamp_type, generate_kwargs={"task": task})
|
85 |
text = output['text']
|
86 |
+
|
87 |
timestamps = format_output_to_list(output['chunks'])
|
88 |
+
|
89 |
+
classifier_output, negative_timestamps = classifier(output['chunks'], audio_language)
|
90 |
+
|
91 |
+
audio_output = mute_audio_range(input_audio, negative_timestamps)
|
92 |
+
output_path = "output_audio.wav"
|
93 |
+
audio_output.export(output_path, format="wav")
|
94 |
+
|
95 |
+
return [text, timestamps, classifier_output, output_path]
|
96 |
|
97 |
examples = [
|
98 |
+
["arabic_english_audios/audios/arabic_audio_1.wav", 'Arabic', 'transcribe', 'word'],
|
99 |
+
["arabic_english_audios/audios/arabic_audio_2.wav", 'Arabic', 'transcribe', 'word'],
|
100 |
+
["arabic_english_audios/audios/arabic_audio_3.wav", 'Arabic', 'transcribe', 'word'],
|
101 |
+
["arabic_english_audios/audios/arabic_audio_4.wav", 'Arabic', 'transcribe', 'word'],
|
102 |
+
["arabic_english_audios/audios/arabic_hate_audio_1.mp3", 'Arabic', 'transcribe', 'word'],
|
103 |
+
["arabic_english_audios/audios/arabic_hate_audio_2.mp3", 'Arabic', 'transcribe', 'word'],
|
104 |
+
["arabic_english_audios/audios/arabic_hate_audio_3.mp3", 'Arabic', 'transcribe', 'word'],
|
105 |
+
["arabic_english_audios/audios/english_audio_1.wav", 'English', 'transcribe', 'word'],
|
106 |
+
["arabic_english_audios/audios/english_audio_2.mp3", 'English', 'transcribe', 'word'],
|
107 |
+
["arabic_english_audios/audios/english_audio_3.mp3", 'English', 'transcribe', 'word'],
|
108 |
+
["arabic_english_audios/audios/english_audio_4.mp3", 'English', 'transcribe', 'word'],
|
109 |
+
["arabic_english_audios/audios/english_audio_5.mp3", 'English', 'transcribe', 'word'],
|
110 |
+
["arabic_english_audios/audios/english_audio_6.wav", 'English', 'transcribe', 'word']
|
111 |
]
|
112 |
|
113 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
114 |
gr.HTML("<h2 style='text-align: center;'>Transcribing Audio with Timestamps using whisper-large-v3</h2>")
|
115 |
+
# gr.Markdown("")
|
116 |
with gr.Row():
|
117 |
with gr.Column():
|
118 |
audio_input = gr.Audio(sources=["upload", 'microphone'], type="filepath", label="Audio file")
|
119 |
+
audio_language = gr.Radio(["Arabic", "English"], label="Audio Language")
|
120 |
task = gr.Radio(["transcribe", "translate"], label="Task")
|
121 |
timestamp_type = gr.Radio(["sentence", "word"], label="Timestamp Type")
|
122 |
with gr.Row():
|
|
|
126 |
with gr.Column():
|
127 |
transcript_output = gr.Text(label="Transcript")
|
128 |
timestamp_output = gr.Text(label="Timestamps")
|
129 |
+
highlighted_output = gr.HighlightedText(label="Words Classification", combine_adjacent=True, show_legend=True, color_map={"negative": "red", "positive": "green"})
|
130 |
+
output_audio = gr.Audio(label="Output Audio")
|
131 |
|
132 |
+
examples = gr.Examples(examples, inputs=[audio_input, audio_language, task, timestamp_type], outputs=[transcript_output, timestamp_output], fn=transcribe, examples_per_page=20)
|
133 |
|
134 |
+
submit_button.click(fn=transcribe, inputs=[audio_input, audio_language, task, timestamp_type], outputs=[transcript_output, timestamp_output, highlighted_output, output_audio])
|
135 |
+
clear_button.add([audio_input, audio_language, task, timestamp_type, transcript_output, timestamp_output, highlighted_output, output_audio])
|
136 |
|
137 |
|
138 |
if __name__ == "__main__":
|