Spaces:
Runtime error
Runtime error
Update app.py
Browse filesadded voice function back as it was left out when aisnipper colors were added
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# Your existing imports remain the same
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
@@ -143,53 +142,6 @@ ai_snipper_css = """
|
|
143 |
color: var(--text-primary) !important;
|
144 |
}
|
145 |
|
146 |
-
/* File upload areas */
|
147 |
-
.gr-file-upload {
|
148 |
-
background: var(--bg-card) !important;
|
149 |
-
border: 2px dashed var(--border-accent) !important;
|
150 |
-
border-radius: 16px !important;
|
151 |
-
color: var(--text-secondary) !important;
|
152 |
-
transition: all 0.3s ease !important;
|
153 |
-
}
|
154 |
-
|
155 |
-
.gr-file-upload:hover {
|
156 |
-
border-color: var(--ai-cyan) !important;
|
157 |
-
background: var(--bg-card-hover) !important;
|
158 |
-
}
|
159 |
-
|
160 |
-
/* Audio input */
|
161 |
-
.gr-audio {
|
162 |
-
background: var(--gradient-card) !important;
|
163 |
-
border: 1px solid var(--border-primary) !important;
|
164 |
-
border-radius: 12px !important;
|
165 |
-
}
|
166 |
-
|
167 |
-
/* Sliders */
|
168 |
-
.gr-slider input[type="range"] {
|
169 |
-
background: var(--bg-secondary) !important;
|
170 |
-
}
|
171 |
-
|
172 |
-
.gr-slider input[type="range"]::-webkit-slider-track {
|
173 |
-
background: var(--bg-secondary) !important;
|
174 |
-
border-radius: 6px !important;
|
175 |
-
}
|
176 |
-
|
177 |
-
.gr-slider input[type="range"]::-webkit-slider-thumb {
|
178 |
-
background: var(--gradient-button) !important;
|
179 |
-
border: none !important;
|
180 |
-
border-radius: 50% !important;
|
181 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2) !important;
|
182 |
-
}
|
183 |
-
|
184 |
-
/* Radio buttons and checkboxes */
|
185 |
-
.gr-radio input[type="radio"] {
|
186 |
-
accent-color: var(--ai-cyan) !important;
|
187 |
-
}
|
188 |
-
|
189 |
-
.gr-checkbox input[type="checkbox"] {
|
190 |
-
accent-color: var(--ai-cyan) !important;
|
191 |
-
}
|
192 |
-
|
193 |
/* Tabs */
|
194 |
.gr-tab-nav {
|
195 |
background: var(--gradient-card) !important;
|
@@ -214,215 +166,995 @@ ai_snipper_css = """
|
|
214 |
box-shadow: 0 2px 4px rgba(6, 182, 212, 0.3) !important;
|
215 |
}
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
color: var(--text-primary) !important;
|
220 |
-
}
|
221 |
-
|
222 |
-
/* Tab content */
|
223 |
-
.gr-tabitem {
|
224 |
background: var(--gradient-card) !important;
|
225 |
border: 1px solid var(--border-primary) !important;
|
226 |
border-radius: 12px !important;
|
227 |
-
padding: 1.5rem !important;
|
228 |
-
margin-top: 1rem !important;
|
229 |
}
|
230 |
|
231 |
-
|
232 |
-
.gr-progress {
|
233 |
-
background: var(--bg-secondary) !important;
|
234 |
-
border-radius: 6px !important;
|
235 |
-
}
|
236 |
-
|
237 |
-
.gr-progress-bar {
|
238 |
background: var(--gradient-button) !important;
|
239 |
-
border
|
240 |
-
|
241 |
-
|
242 |
-
/* Accordion */
|
243 |
-
.gr-accordion {
|
244 |
-
background: var(--gradient-card) !important;
|
245 |
-
border: 1px solid var(--border-primary) !important;
|
246 |
-
border-radius: 12px !important;
|
247 |
-
}
|
248 |
-
|
249 |
-
.gr-accordion summary {
|
250 |
-
background: var(--bg-card) !important;
|
251 |
-
color: var(--text-primary) !important;
|
252 |
-
padding: 1rem !important;
|
253 |
-
border-radius: 12px !important;
|
254 |
-
cursor: pointer !important;
|
255 |
-
font-weight: 600 !important;
|
256 |
-
}
|
257 |
-
|
258 |
-
.gr-accordion[open] summary {
|
259 |
-
border-bottom: 1px solid var(--border-primary) !important;
|
260 |
-
border-radius: 12px 12px 0 0 !important;
|
261 |
-
}
|
262 |
-
|
263 |
-
/* JSON output */
|
264 |
-
.gr-json {
|
265 |
-
background: var(--bg-secondary) !important;
|
266 |
-
border: 1px solid var(--border-primary) !important;
|
267 |
-
border-radius: 12px !important;
|
268 |
-
color: var(--text-primary) !important;
|
269 |
-
}
|
270 |
-
|
271 |
-
/* HTML output areas */
|
272 |
-
.gr-html {
|
273 |
-
background: var(--gradient-card) !important;
|
274 |
-
border: 1px solid var(--border-primary) !important;
|
275 |
-
border-radius: 12px !important;
|
276 |
-
padding: 1rem !important;
|
277 |
}
|
278 |
|
279 |
-
|
280 |
-
|
281 |
-
background: var(--gradient-card) !important;
|
282 |
-
border: 1px solid var(--border-primary) !important;
|
283 |
-
border-radius: 12px !important;
|
284 |
-
padding: 1rem !important;
|
285 |
}
|
286 |
|
287 |
-
/*
|
288 |
-
|
289 |
-
|
290 |
}
|
|
|
291 |
|
292 |
-
|
293 |
-
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
height: 8px;
|
300 |
-
}
|
301 |
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
-
|
313 |
-
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
|
|
|
|
351 |
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
}
|
395 |
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
""
|
406 |
-
|
407 |
-
|
408 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
|
419 |
-
|
420 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
-
|
423 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
|
425 |
-
#
|
426 |
with gr.Blocks(
|
427 |
css=ai_snipper_css,
|
428 |
title="𧬠AI Snipper Keyword DNA Analyzer",
|
@@ -436,9 +1168,11 @@ with gr.Blocks(
|
|
436 |
|
437 |
# Custom header with DNA theme
|
438 |
gr.HTML("""
|
439 |
-
<div
|
440 |
-
<h1
|
441 |
-
|
|
|
|
|
442 |
Decode the genetic structure of your keywords with AI-powered analysis
|
443 |
</p>
|
444 |
</div>
|
@@ -489,19 +1223,18 @@ with gr.Blocks(
|
|
489 |
|
490 |
# Status indicator with custom styling
|
491 |
status_html = gr.HTML(
|
492 |
-
'<div
|
493 |
)
|
494 |
|
495 |
# Main analyze button
|
496 |
analyze_btn = gr.Button(
|
497 |
"𧬠Analyze DNA",
|
498 |
-
variant="primary"
|
499 |
-
size="lg"
|
500 |
)
|
501 |
|
502 |
# Example buttons with custom styling
|
503 |
gr.Markdown("### π‘ Try These Examples")
|
504 |
-
with gr.Row(
|
505 |
example_btns = []
|
506 |
examples = [
|
507 |
"preprocessing",
|
@@ -533,7 +1266,7 @@ with gr.Blocks(
|
|
533 |
with gr.Tab("πΎ Raw Data"):
|
534 |
json_output = gr.JSON()
|
535 |
|
536 |
-
# Event handlers
|
537 |
voice_submit_btn.click(
|
538 |
handle_voice_input,
|
539 |
inputs=[audio_input],
|
@@ -542,14 +1275,14 @@ with gr.Blocks(
|
|
542 |
|
543 |
# Updated status messages with custom styling
|
544 |
analyze_btn.click(
|
545 |
-
lambda: '<div
|
546 |
outputs=status_html
|
547 |
).then(
|
548 |
analyze_keyword,
|
549 |
inputs=[input_text, forecast_months, growth_scenario, include_serp],
|
550 |
outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text]
|
551 |
).then(
|
552 |
-
lambda: '<div
|
553 |
outputs=status_html
|
554 |
)
|
555 |
|
@@ -564,21 +1297,17 @@ with gr.Blocks(
|
|
564 |
inputs=[btn],
|
565 |
outputs=[input_text]
|
566 |
).then(
|
567 |
-
lambda: '<div
|
568 |
outputs=status_html
|
569 |
).then(
|
570 |
analyze_keyword,
|
571 |
inputs=[input_text, forecast_months, growth_scenario, include_serp],
|
572 |
outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text]
|
573 |
).then(
|
574 |
-
lambda: '<div
|
575 |
outputs=status_html
|
576 |
)
|
577 |
|
578 |
# Launch configuration
|
579 |
if __name__ == "__main__":
|
580 |
-
demo.launch(
|
581 |
-
share=True,
|
582 |
-
show_error=True,
|
583 |
-
debug=True
|
584 |
-
)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
|
|
142 |
color: var(--text-primary) !important;
|
143 |
}
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
/* Tabs */
|
146 |
.gr-tab-nav {
|
147 |
background: var(--gradient-card) !important;
|
|
|
166 |
box-shadow: 0 2px 4px rgba(6, 182, 212, 0.3) !important;
|
167 |
}
|
168 |
|
169 |
+
/* Other elements */
|
170 |
+
.gr-audio, .gr-file-upload {
|
|
|
|
|
|
|
|
|
|
|
171 |
background: var(--gradient-card) !important;
|
172 |
border: 1px solid var(--border-primary) !important;
|
173 |
border-radius: 12px !important;
|
|
|
|
|
174 |
}
|
175 |
|
176 |
+
.gr-slider input[type="range"]::-webkit-slider-thumb {
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
background: var(--gradient-button) !important;
|
178 |
+
border: none !important;
|
179 |
+
border-radius: 50% !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
}
|
181 |
|
182 |
+
.gr-radio input[type="radio"], .gr-checkbox input[type="checkbox"] {
|
183 |
+
accent-color: var(--ai-cyan) !important;
|
|
|
|
|
|
|
|
|
184 |
}
|
185 |
|
186 |
+
/* Footer hiding */
|
187 |
+
footer {
|
188 |
+
visibility: hidden !important;
|
189 |
}
|
190 |
+
"""
|
191 |
|
192 |
+
# Global variables to store models
|
193 |
+
tokenizer = None
|
194 |
+
ner_pipeline = None
|
195 |
+
pos_pipeline = None
|
196 |
+
intent_classifier = None
|
197 |
+
semantic_model = None
|
198 |
+
stt_model = None # Speech-to-text model
|
199 |
+
models_loaded = False
|
200 |
|
201 |
+
# Database to store keyword ranking history (in-memory database for this example)
|
202 |
+
# In a real app, you would use a proper database
|
203 |
+
ranking_history = {}
|
|
|
|
|
204 |
|
205 |
+
def load_models(progress=gr.Progress()):
|
206 |
+
"""Lazy-load models only when needed"""
|
207 |
+
global tokenizer, ner_pipeline, pos_pipeline, intent_classifier, semantic_model, stt_model, models_loaded
|
208 |
+
|
209 |
+
if models_loaded:
|
210 |
+
return True
|
211 |
+
|
212 |
+
try:
|
213 |
+
progress(0.1, desc="Loading models...")
|
214 |
+
|
215 |
+
# Use smaller models and load them sequentially to reduce memory pressure
|
216 |
+
from transformers import AutoTokenizer, pipeline
|
217 |
+
|
218 |
+
progress(0.2, desc="Loading tokenizer...")
|
219 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
220 |
+
|
221 |
+
progress(0.3, desc="Loading NER model...")
|
222 |
+
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")
|
223 |
+
|
224 |
+
progress(0.4, desc="Loading POS model...")
|
225 |
+
# Use smaller POS model
|
226 |
+
from transformers import AutoModelForTokenClassification, BertTokenizerFast
|
227 |
+
pos_model = AutoModelForTokenClassification.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos")
|
228 |
+
pos_tokenizer = BertTokenizerFast.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos")
|
229 |
+
pos_pipeline = pipeline("token-classification", model=pos_model, tokenizer=pos_tokenizer)
|
230 |
+
|
231 |
+
progress(0.6, desc="Loading intent classifier...")
|
232 |
+
# Use a smaller model for zero-shot classification
|
233 |
+
intent_classifier = pipeline(
|
234 |
+
"zero-shot-classification",
|
235 |
+
model="typeform/distilbert-base-uncased-mnli", # Smaller than BART
|
236 |
+
device=0 if torch.cuda.is_available() else -1 # Use GPU if available
|
237 |
+
)
|
238 |
+
|
239 |
+
progress(0.7, desc="Loading speech-to-text model...")
|
240 |
+
try:
|
241 |
+
# Load automatic speech recognition model
|
242 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
243 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-small.en")
|
244 |
+
stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small.en")
|
245 |
+
stt_model = (processor, stt_model)
|
246 |
+
except Exception as e:
|
247 |
+
print(f"Warning: Could not load speech-to-text model: {str(e)}")
|
248 |
+
stt_model = None # Set to None so we can check if it's available
|
249 |
+
|
250 |
+
progress(0.8, desc="Loading semantic model...")
|
251 |
+
try:
|
252 |
+
from sentence_transformers import SentenceTransformer
|
253 |
+
semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
|
254 |
+
except Exception as e:
|
255 |
+
print(f"Warning: Could not load semantic model: {str(e)}")
|
256 |
+
semantic_model = None # Set to None so we can check if it's available
|
257 |
+
|
258 |
+
progress(1.0, desc="Models loaded successfully!")
|
259 |
+
models_loaded = True
|
260 |
+
return True
|
261 |
+
|
262 |
+
except Exception as e:
|
263 |
+
print(f"Error loading models: {str(e)}")
|
264 |
+
return f"Error: {str(e)}"
|
265 |
|
266 |
+
def speech_to_text(audio_path):
|
267 |
+
"""Convert speech to text using the loaded speech-to-text model"""
|
268 |
+
if stt_model is None:
|
269 |
+
return "Speech-to-text model not loaded. Please try text input instead."
|
270 |
+
|
271 |
+
try:
|
272 |
+
import librosa
|
273 |
+
import numpy as np
|
274 |
+
|
275 |
+
# Load audio file
|
276 |
+
audio, sr = librosa.load(audio_path, sr=16000)
|
277 |
+
|
278 |
+
# Process audio with Whisper
|
279 |
+
processor, model = stt_model
|
280 |
+
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
|
281 |
+
|
282 |
+
# Generate token ids
|
283 |
+
predicted_ids = model.generate(input_features)
|
284 |
+
|
285 |
+
# Decode token ids to text
|
286 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
287 |
+
|
288 |
+
return transcription
|
289 |
+
except Exception as e:
|
290 |
+
print(f"Error in speech_to_text: {str(e)}")
|
291 |
+
return f"Error processing speech: {str(e)}"
|
292 |
|
293 |
+
def handle_voice_input(audio):
|
294 |
+
"""Handle voice input and convert to text"""
|
295 |
+
if audio is None:
|
296 |
+
return "No audio detected. Please try again."
|
297 |
+
|
298 |
+
try:
|
299 |
+
# Convert speech to text
|
300 |
+
text = speech_to_text(audio)
|
301 |
+
return text
|
302 |
+
except Exception as e:
|
303 |
+
print(f"Error in handle_voice_input: {str(e)}")
|
304 |
+
return f"Error: {str(e)}"
|
305 |
|
306 |
+
def simulate_google_serp(keyword, num_results=10):
|
307 |
+
"""Simulate Google SERP results for a keyword"""
|
308 |
+
try:
|
309 |
+
# In a real implementation, this would call the Google API
|
310 |
+
# For now, we'll generate fake SERP data
|
311 |
+
|
312 |
+
# Deterministic seed for consistent results by keyword
|
313 |
+
np.random.seed(sum(ord(c) for c in keyword))
|
314 |
+
|
315 |
+
serp_results = []
|
316 |
+
domains = [
|
317 |
+
"example.com", "wikipedia.org", "medium.com", "github.com",
|
318 |
+
"stackoverflow.com", "amazon.com", "youtube.com", "reddit.com",
|
319 |
+
"linkedin.com", "twitter.com", "facebook.com", "instagram.com"
|
320 |
+
]
|
321 |
+
|
322 |
+
for i in range(1, num_results + 1):
|
323 |
+
domain = domains[i % len(domains)]
|
324 |
+
title = f"{keyword.title()} - {domain.split('.')[0].title()} Resource #{i}"
|
325 |
+
snippet = f"This is a simulated SERP result for '{keyword}'. Result #{i} would provide relevant information about this topic."
|
326 |
+
url = f"https://www.{domain}/{keyword.replace(' ', '-')}-resource-{i}"
|
327 |
+
|
328 |
+
position = i
|
329 |
+
ctr = round(0.3 * (0.85 ** (i - 1)), 4) # Simulate click-through rate decay
|
330 |
+
|
331 |
+
serp_results.append({
|
332 |
+
"position": position,
|
333 |
+
"title": title,
|
334 |
+
"url": url,
|
335 |
+
"domain": domain,
|
336 |
+
"snippet": snippet,
|
337 |
+
"ctr_estimate": ctr,
|
338 |
+
"impressions_estimate": np.random.randint(1000, 10000)
|
339 |
+
})
|
340 |
+
|
341 |
+
return serp_results
|
342 |
+
except Exception as e:
|
343 |
+
print(f"Error in simulate_google_serp: {str(e)}")
|
344 |
+
return []
|
345 |
|
346 |
+
def update_ranking_history(keyword, serp_results):
|
347 |
+
"""Update the ranking history for a keyword"""
|
348 |
+
try:
|
349 |
+
# Get current timestamp
|
350 |
+
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
351 |
+
|
352 |
+
# Initialize if keyword not in history
|
353 |
+
if keyword not in ranking_history:
|
354 |
+
ranking_history[keyword] = []
|
355 |
+
|
356 |
+
# Add new entry
|
357 |
+
ranking_history[keyword].append({
|
358 |
+
"timestamp": timestamp,
|
359 |
+
"results": serp_results[:5] # Store top 5 results for history
|
360 |
+
})
|
361 |
+
|
362 |
+
# Keep only last 10 entries for each keyword
|
363 |
+
if len(ranking_history[keyword]) > 10:
|
364 |
+
ranking_history[keyword] = ranking_history[keyword][-10:]
|
365 |
+
|
366 |
+
return True
|
367 |
+
except Exception as e:
|
368 |
+
print(f"Error in update_ranking_history: {str(e)}")
|
369 |
+
return False
|
370 |
|
371 |
+
def get_semantic_similarity(token, comparison_terms):
|
372 |
+
"""Calculate semantic similarity between a token and comparison terms"""
|
373 |
+
try:
|
374 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
375 |
+
|
376 |
+
token_embedding = semantic_model.encode([token])[0]
|
377 |
+
comparison_embeddings = semantic_model.encode(comparison_terms)
|
378 |
+
|
379 |
+
similarities = []
|
380 |
+
for i, emb in enumerate(comparison_embeddings):
|
381 |
+
similarity = cosine_similarity([token_embedding], [emb])[0][0]
|
382 |
+
similarities.append((comparison_terms[i], float(similarity)))
|
383 |
+
|
384 |
+
return sorted(similarities, key=lambda x: x[1], reverse=True)
|
385 |
+
except Exception as e:
|
386 |
+
print(f"Error in semantic similarity: {str(e)}")
|
387 |
+
# Return dummy data on error
|
388 |
+
return [(term, 0.5) for term in comparison_terms]
|
389 |
|
390 |
+
def get_token_colors(token_type):
|
391 |
+
colors = {
|
392 |
+
"prefix": "#D8BFD8", # Light purple
|
393 |
+
"suffix": "#AEDAA4", # Light green
|
394 |
+
"stem": "#A4C2F4", # Light blue
|
395 |
+
"compound_first": "#FFCC80", # Light orange
|
396 |
+
"compound_second": "#FFCC80", # Light orange
|
397 |
+
"word": "#E5E5E5" # Light gray
|
398 |
+
}
|
399 |
+
return colors.get(token_type, "#E5E5E5")
|
400 |
|
401 |
+
def simulate_historical_data(token):
|
402 |
+
"""Generate simulated historical usage data for a token"""
|
403 |
+
eras = ["1900s", "1950s", "1980s", "2000s", "2010s", "Present"]
|
404 |
+
|
405 |
+
# Different patterns based on token characteristics
|
406 |
+
if len(token) > 8:
|
407 |
+
# Possibly a technical term - recent growth
|
408 |
+
values = [10, 20, 30, 60, 85, 95]
|
409 |
+
elif token.startswith(("un", "re", "de", "pre")):
|
410 |
+
# Prefix words tend to be older
|
411 |
+
values = [45, 50, 60, 70, 75, 80]
|
412 |
+
else:
|
413 |
+
# Standard pattern for common words
|
414 |
+
# Use token hash value modulo instead of hash() directly to avoid different results across runs
|
415 |
+
base = 50 + (sum(ord(c) for c in token) % 30)
|
416 |
+
# Use a fixed seed for reproducibility
|
417 |
+
np.random.seed(sum(ord(c) for c in token))
|
418 |
+
noise = np.random.normal(0, 5, 6)
|
419 |
+
values = [max(5, min(95, base + i*5 + n)) for i, n in enumerate(noise)]
|
420 |
+
|
421 |
+
return list(zip(eras, values))
|
422 |
|
423 |
+
def generate_origin_data(token):
|
424 |
+
"""Generate simulated origin/etymology data for a token"""
|
425 |
+
origins = [
|
426 |
+
{"era": "Ancient", "language": "Latin"},
|
427 |
+
{"era": "Ancient", "language": "Greek"},
|
428 |
+
{"era": "Medieval", "language": "Old English"},
|
429 |
+
{"era": "16th century", "language": "French"},
|
430 |
+
{"era": "18th century", "language": "Germanic"},
|
431 |
+
{"era": "19th century", "language": "Anglo-Saxon"},
|
432 |
+
{"era": "20th century", "language": "Modern English"}
|
433 |
+
]
|
434 |
+
|
435 |
+
# Deterministic selection based on the token
|
436 |
+
index = sum(ord(c) for c in token) % len(origins)
|
437 |
+
origin = origins[index]
|
438 |
+
|
439 |
+
note = f"First appeared in {origin['era']} texts derived from {origin['language']}."
|
440 |
+
origin["note"] = note
|
441 |
+
|
442 |
+
return origin
|
443 |
|
444 |
+
def analyze_token_types(tokens):
|
445 |
+
"""Identify token types (prefix, suffix, compound, etc.)"""
|
446 |
+
processed_tokens = []
|
447 |
+
|
448 |
+
prefixes = ["un", "re", "de", "pre", "post", "anti", "pro", "inter", "sub", "super"]
|
449 |
+
suffixes = ["ing", "ed", "ly", "ment", "tion", "able", "ible", "ness", "ful", "less"]
|
450 |
+
|
451 |
+
for token in tokens:
|
452 |
+
token_text = token.lower()
|
453 |
+
token_type = "word"
|
454 |
+
|
455 |
+
# Check for prefixes
|
456 |
+
for prefix in prefixes:
|
457 |
+
if token_text.startswith(prefix) and len(token_text) > len(prefix) + 2:
|
458 |
+
if token_text != prefix: # Make sure the word isn't just the prefix
|
459 |
+
token_type = "prefix"
|
460 |
+
break
|
461 |
+
|
462 |
+
# Check for suffixes
|
463 |
+
if token_type == "word":
|
464 |
+
for suffix in suffixes:
|
465 |
+
if token_text.endswith(suffix) and len(token_text) > len(suffix) + 2:
|
466 |
+
token_type = "suffix"
|
467 |
+
break
|
468 |
+
|
469 |
+
# Check for compound words (simplified)
|
470 |
+
if token_type == "word" and len(token_text) > 8:
|
471 |
+
token_type = "compound_first" # Simplified - in reality would need more analysis
|
472 |
+
|
473 |
+
processed_tokens.append({
|
474 |
+
"text": token_text,
|
475 |
+
"type": token_type
|
476 |
+
})
|
477 |
+
|
478 |
+
return processed_tokens
|
479 |
|
480 |
+
def plot_historical_data(historical_data):
|
481 |
+
"""Create a plot of historical usage data, with error handling"""
|
482 |
+
try:
|
483 |
+
eras = [item[0] for item in historical_data]
|
484 |
+
values = [item[1] for item in historical_data]
|
485 |
+
|
486 |
+
plt.figure(figsize=(8, 3))
|
487 |
+
plt.bar(eras, values, color='skyblue')
|
488 |
+
plt.title('Historical Usage')
|
489 |
+
plt.xlabel('Era')
|
490 |
+
plt.ylabel('Usage Level')
|
491 |
+
plt.ylim(0, 100)
|
492 |
+
plt.xticks(rotation=45)
|
493 |
+
plt.tight_layout()
|
494 |
+
|
495 |
+
return plt
|
496 |
+
except Exception as e:
|
497 |
+
print(f"Error in plot_historical_data: {str(e)}")
|
498 |
+
# Return a simple error plot
|
499 |
+
plt.figure(figsize=(8, 3))
|
500 |
+
plt.text(0.5, 0.5, f"Error creating plot: {str(e)}",
|
501 |
+
horizontalalignment='center', verticalalignment='center')
|
502 |
+
plt.axis('off')
|
503 |
+
return plt
|
504 |
|
505 |
+
def create_evolution_chart(data, forecast_months=6, growth_scenario="Moderate"):
|
506 |
+
"""Create a simpler chart that's more compatible with Gradio"""
|
507 |
+
try:
|
508 |
+
import plotly.graph_objects as go
|
509 |
+
|
510 |
+
# Create a basic figure without subplots
|
511 |
+
fig = go.Figure()
|
512 |
+
|
513 |
+
# Add main trace for search volume
|
514 |
+
fig.add_trace(
|
515 |
+
go.Scatter(
|
516 |
+
x=[item["month"] for item in data],
|
517 |
+
y=[item["searchVolume"] for item in data],
|
518 |
+
name="Search Volume",
|
519 |
+
line=dict(color="#8884d8", width=3),
|
520 |
+
mode="lines+markers"
|
521 |
+
)
|
522 |
+
)
|
523 |
+
|
524 |
+
# Scale the other metrics to be visible on the same chart
|
525 |
+
max_volume = max([item["searchVolume"] for item in data])
|
526 |
+
scale_factor = max_volume / 100
|
527 |
+
|
528 |
+
# Add competition score (scaled)
|
529 |
+
fig.add_trace(
|
530 |
+
go.Scatter(
|
531 |
+
x=[item["month"] for item in data],
|
532 |
+
y=[item["competitionScore"] * scale_factor for item in data],
|
533 |
+
name="Competition Score",
|
534 |
+
line=dict(color="#82ca9d", width=2, dash="dot"),
|
535 |
+
mode="lines+markers"
|
536 |
+
)
|
537 |
+
)
|
538 |
+
|
539 |
+
# Add intent clarity (scaled)
|
540 |
+
fig.add_trace(
|
541 |
+
go.Scatter(
|
542 |
+
x=[item["month"] for item in data],
|
543 |
+
y=[item["intentClarity"] * scale_factor for item in data],
|
544 |
+
name="Intent Clarity",
|
545 |
+
line=dict(color="#ffc658", width=2, dash="dash"),
|
546 |
+
mode="lines+markers"
|
547 |
+
)
|
548 |
+
)
|
549 |
+
|
550 |
+
# Simple layout
|
551 |
+
fig.update_layout(
|
552 |
+
title=f"Keyword Evolution Forecast ({growth_scenario} Growth)",
|
553 |
+
xaxis_title="Month",
|
554 |
+
yaxis_title="Value",
|
555 |
+
legend=dict(orientation="h", y=1.1),
|
556 |
+
height=500
|
557 |
+
)
|
558 |
+
|
559 |
+
return fig
|
560 |
+
|
561 |
+
except Exception as e:
|
562 |
+
print(f"Error in chart creation: {str(e)}")
|
563 |
+
# Fallback to an even simpler chart
|
564 |
+
fig = go.Figure(data=go.Scatter(x=[1, 2, 3], y=[4, 1, 2]))
|
565 |
+
fig.update_layout(title="Fallback Chart (Error occurred)")
|
566 |
+
return fig
|
567 |
|
568 |
+
def create_ranking_history_chart(keyword_history):
|
569 |
+
"""Create a chart showing keyword ranking history over time"""
|
570 |
+
try:
|
571 |
+
if not keyword_history or len(keyword_history) < 2:
|
572 |
+
# Not enough data for a meaningful chart
|
573 |
+
fig = go.Figure()
|
574 |
+
fig.update_layout(
|
575 |
+
title="Insufficient Ranking Data",
|
576 |
+
annotations=[{
|
577 |
+
"text": "Need at least 2 data points for ranking history",
|
578 |
+
"showarrow": False,
|
579 |
+
"font": {"size": 16},
|
580 |
+
"xref": "paper",
|
581 |
+
"yref": "paper",
|
582 |
+
"x": 0.5,
|
583 |
+
"y": 0.5
|
584 |
+
}]
|
585 |
+
)
|
586 |
+
return fig
|
587 |
+
|
588 |
+
# Create a figure
|
589 |
+
fig = go.Figure()
|
590 |
+
|
591 |
+
# Extract timestamps and convert to datetime objects
|
592 |
+
timestamps = [entry["timestamp"] for entry in keyword_history]
|
593 |
+
dates = [datetime.datetime.strptime(ts, "%Y-%m-%d %H:%M:%S") for ts in timestamps]
|
594 |
+
|
595 |
+
# Get unique domains from all results
|
596 |
+
all_domains = set()
|
597 |
+
for entry in keyword_history:
|
598 |
+
for result in entry["results"]:
|
599 |
+
all_domains.add(result["domain"])
|
600 |
+
|
601 |
+
# Colors for different domains
|
602 |
+
domain_colors = {}
|
603 |
+
color_palette = [
|
604 |
+
"#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
|
605 |
+
"#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"
|
606 |
+
]
|
607 |
+
for i, domain in enumerate(all_domains):
|
608 |
+
domain_colors[domain] = color_palette[i % len(color_palette)]
|
609 |
+
|
610 |
+
# Track domains and their positions over time
|
611 |
+
domain_tracking = {domain: {"x": [], "y": [], "text": []} for domain in all_domains}
|
612 |
+
|
613 |
+
for i, entry in enumerate(keyword_history):
|
614 |
+
for result in entry["results"]:
|
615 |
+
domain = result["domain"]
|
616 |
+
position = result["position"]
|
617 |
+
title = result["title"]
|
618 |
+
|
619 |
+
domain_tracking[domain]["x"].append(dates[i])
|
620 |
+
domain_tracking[domain]["y"].append(position)
|
621 |
+
domain_tracking[domain]["text"].append(title)
|
622 |
+
|
623 |
+
# Add traces for each domain
|
624 |
+
for domain, data in domain_tracking.items():
|
625 |
+
if len(data["x"]) > 0: # Only add domains that have data
|
626 |
+
fig.add_trace(
|
627 |
+
go.Scatter(
|
628 |
+
x=data["x"],
|
629 |
+
y=data["y"],
|
630 |
+
mode="lines+markers",
|
631 |
+
name=domain,
|
632 |
+
line=dict(color=domain_colors[domain]),
|
633 |
+
hovertemplate="%{text}<br>Position: %{y}<br>Date: %{x}<extra></extra>",
|
634 |
+
text=data["text"],
|
635 |
+
marker=dict(size=8)
|
636 |
+
)
|
637 |
+
)
|
638 |
+
|
639 |
+
# Update layout
|
640 |
+
fig.update_layout(
|
641 |
+
title="Keyword Ranking History",
|
642 |
+
xaxis_title="Date",
|
643 |
+
yaxis_title="Position",
|
644 |
+
yaxis=dict(autorange="reversed"), # Invert y-axis so position 1 is on top
|
645 |
+
hovermode="closest",
|
646 |
+
height=500
|
647 |
+
)
|
648 |
+
|
649 |
+
return fig
|
650 |
+
|
651 |
+
except Exception as e:
|
652 |
+
print(f"Error in create_ranking_history_chart: {str(e)}")
|
653 |
+
# Return fallback chart
|
654 |
+
fig = go.Figure()
|
655 |
+
fig.update_layout(
|
656 |
+
title="Error Creating Ranking Chart",
|
657 |
+
annotations=[{
|
658 |
+
"text": f"Error: {str(e)}",
|
659 |
+
"showarrow": False,
|
660 |
+
"font": {"size": 14},
|
661 |
+
"xref": "paper",
|
662 |
+
"yref": "paper",
|
663 |
+
"x": 0.5,
|
664 |
+
"y": 0.5
|
665 |
+
}]
|
666 |
+
)
|
667 |
+
return fig
|
668 |
|
669 |
+
def generate_serp_html(keyword, serp_results):
|
670 |
+
"""Generate HTML for SERP results"""
|
671 |
+
if not serp_results:
|
672 |
+
return "<div>No SERP results available</div>"
|
|
|
673 |
|
674 |
+
html = f"""
|
675 |
+
<div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;">
|
676 |
+
<h2 style="margin-top: 0;">SERP Results for "{keyword}"</h2>
|
677 |
+
|
678 |
+
<div style="background-color: #f5f5f5; padding: 10px; border-radius: 4px; margin-bottom: 20px;">
|
679 |
+
<div style="color: #666; font-size: 12px;">This is a simulated SERP. In a real application, this would use the Google API.</div>
|
680 |
+
</div>
|
681 |
+
|
682 |
+
<div class="serp-results" style="display: flex; flex-direction: column; gap: 16px;">
|
683 |
+
"""
|
684 |
|
685 |
+
for result in serp_results:
|
686 |
+
position = result["position"]
|
687 |
+
title = result["title"]
|
688 |
+
url = result["url"]
|
689 |
+
snippet = result["snippet"]
|
690 |
+
domain = result["domain"]
|
691 |
+
ctr = result["ctr_estimate"]
|
692 |
+
impressions = result["impressions_estimate"]
|
693 |
+
|
694 |
+
html += f"""
|
695 |
+
<div class="serp-result" style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; position: relative;">
|
696 |
+
<div style="position: absolute; top: -10px; left: -10px; background-color: #4299e1; color: white; width: 24px; height: 24px; border-radius: 50%; display: flex; align-items: center; justify-content: center; font-size: 12px;">
|
697 |
+
{position}
|
698 |
+
</div>
|
699 |
+
<div style="margin-bottom: 5px;">
|
700 |
+
<a href="#" style="font-size: 18px; color: #1a73e8; text-decoration: none; font-weight: 500;">{title}</a>
|
701 |
+
</div>
|
702 |
+
<div style="margin-bottom: 8px; color: #006621; font-size: 14px;">{url}</div>
|
703 |
+
<div style="color: #4d5156; font-size: 14px;">{snippet}</div>
|
704 |
+
|
705 |
+
<div style="display: flex; margin-top: 10px; font-size: 12px; color: #666;">
|
706 |
+
<div style="margin-right: 15px;"><span style="font-weight: 500;">CTR:</span> {ctr:.2%}</div>
|
707 |
+
<div><span style="font-weight: 500;">Est. Impressions:</span> {impressions:,}</div>
|
708 |
+
</div>
|
709 |
+
</div>
|
710 |
+
"""
|
711 |
+
|
712 |
+
html += """
|
713 |
+
</div>
|
714 |
+
</div>
|
715 |
+
"""
|
716 |
+
|
717 |
+
return html
|
718 |
|
719 |
+
def generate_token_visualization_html(token_analysis, full_analysis):
|
720 |
+
"""Generate HTML for token visualization"""
|
721 |
+
html = """
|
722 |
+
<div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;">
|
723 |
+
<h2 style="margin-top: 0;">Token Visualization</h2>
|
724 |
+
|
725 |
+
<div style="margin-bottom: 20px; padding: 15px; background-color: #f8f9fa; border-radius: 6px;">
|
726 |
+
<div style="margin-bottom: 8px; font-weight: bold; color: #4a5568;">Human View:</div>
|
727 |
+
<div style="display: flex; flex-wrap: wrap; gap: 8px;">
|
728 |
+
"""
|
729 |
+
|
730 |
+
# Add human view tokens
|
731 |
+
for token in token_analysis:
|
732 |
+
html += f"""
|
733 |
+
<div style="padding: 6px 12px; background-color: white; border: 1px solid #cbd5e0; border-radius: 4px;">
|
734 |
+
{token['text']}
|
735 |
+
</div>
|
736 |
+
"""
|
737 |
+
|
738 |
+
html += """
|
739 |
+
</div>
|
740 |
+
</div>
|
741 |
+
|
742 |
+
<div style="text-align: center; margin: 15px 0;">
|
743 |
+
<span style="font-size: 20px;">β</span>
|
744 |
+
</div>
|
745 |
+
|
746 |
+
<div style="padding: 15px; background-color: #f0fff4; border-radius: 6px;">
|
747 |
+
<div style="margin-bottom: 8px; font-weight: bold; color: #2f855a;">Machine View:</div>
|
748 |
+
<div style="display: flex; flex-wrap: wrap; gap: 8px;">
|
749 |
+
"""
|
750 |
+
|
751 |
+
# Add machine view tokens
|
752 |
+
for token in full_analysis:
|
753 |
+
bg_color = get_token_colors(token["type"])
|
754 |
+
html += f"""
|
755 |
+
<div style="padding: 6px 12px; background-color: {bg_color}; border: 1px solid #a0aec0; border-radius: 4px; font-family: monospace;">
|
756 |
+
{token['token']}
|
757 |
+
<span style="font-size: 10px; opacity: 0.7; display: block;">{token['type']}</span>
|
758 |
+
</div>
|
759 |
+
"""
|
760 |
+
|
761 |
+
html += """
|
762 |
+
</div>
|
763 |
+
</div>
|
764 |
+
|
765 |
+
<div style="margin-top: 20px; display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; text-align: center;">
|
766 |
+
"""
|
767 |
+
|
768 |
+
# Add stats
|
769 |
+
word_count = len(token_analysis)
|
770 |
+
token_count = len(full_analysis)
|
771 |
+
ratio = round(token_count / max(1, word_count), 2)
|
772 |
+
|
773 |
+
html += f"""
|
774 |
+
<div style="background-color: #ebf8ff; padding: 10px; border-radius: 6px;">
|
775 |
+
<div style="font-size: 24px; font-weight: bold; color: #3182ce;">{word_count}</div>
|
776 |
+
<div style="font-size: 14px; color: #4299e1;">Words</div>
|
777 |
+
</div>
|
778 |
+
|
779 |
+
<div style="background-color: #f0fff4; padding: 10px; border-radius: 6px;">
|
780 |
+
<div style="font-size: 24px; font-weight: bold; color: #38a169;">{token_count}</div>
|
781 |
+
<div style="font-size: 14px; color: #48bb78;">Tokens</div>
|
782 |
+
</div>
|
783 |
+
|
784 |
+
<div style="background-color: #faf5ff; padding: 10px; border-radius: 6px;">
|
785 |
+
<div style="font-size: 24px; font-weight: bold; color: #805ad5;">{ratio}</div>
|
786 |
+
<div style="font-size: 14px; color: #9f7aea;">Tokens per Word</div>
|
787 |
+
</div>
|
788 |
+
"""
|
789 |
+
|
790 |
+
html += """
|
791 |
+
</div>
|
792 |
+
</div>
|
793 |
+
"""
|
794 |
+
|
795 |
+
return html
|
796 |
|
797 |
+
def generate_full_analysis_html(keyword, token_analysis, intent_analysis, evolution_potential, trends):
|
798 |
+
"""Generate HTML for full keyword analysis"""
|
799 |
+
html = f"""
|
800 |
+
<div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;">
|
801 |
+
<h2 style="margin-top: 0;">Keyword DNA Analysis for: {keyword}</h2>
|
802 |
+
|
803 |
+
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 15px; margin-bottom: 20px;">
|
804 |
+
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px;">
|
805 |
+
<h3 style="margin-top: 0; font-size: 16px;">Intent Gene</h3>
|
806 |
+
<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">
|
807 |
+
<span>Type:</span>
|
808 |
+
<span>{intent_analysis['type']}</span>
|
809 |
+
</div>
|
810 |
+
<div style="display: flex; justify-content: space-between; align-items: center;">
|
811 |
+
<span>Strength:</span>
|
812 |
+
<div style="width: 120px; height: 8px; background-color: #edf2f7; border-radius: 4px; overflow: hidden;">
|
813 |
+
<div style="height: 100%; background-color: #48bb78; width: {intent_analysis['strength']}%;"></div>
|
814 |
+
</div>
|
815 |
+
</div>
|
816 |
+
</div>
|
817 |
+
|
818 |
+
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px;">
|
819 |
+
<h3 style="margin-top: 0; font-size: 16px;">Evolution Potential</h3>
|
820 |
+
<div style="display: flex; justify-content: center; align-items: center; height: 100px;">
|
821 |
+
<div style="position: relative; width: 100px; height: 100px;">
|
822 |
+
<div style="position: absolute; inset: 0; display: flex; align-items: center; justify-content: center;">
|
823 |
+
<span style="font-size: 24px; font-weight: bold;">{evolution_potential}</span>
|
824 |
+
</div>
|
825 |
+
<svg width="100" height="100" viewBox="0 0 36 36">
|
826 |
+
<path
|
827 |
+
d="M18 2.0845 a 15.9155 15.9155 0 0 1 0 31.831 a 15.9155 15.9155 0 0 1 0 -31.831"
|
828 |
+
fill="none"
|
829 |
+
stroke="#4CAF50"
|
830 |
+
stroke-width="3"
|
831 |
+
stroke-dasharray="{evolution_potential}, 100"
|
832 |
+
/>
|
833 |
+
</svg>
|
834 |
+
</div>
|
835 |
+
</div>
|
836 |
+
</div>
|
837 |
+
</div>
|
838 |
+
|
839 |
+
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; margin-bottom: 20px;">
|
840 |
+
<h3 style="margin-top: 0; font-size: 16px;">Future Mutations</h3>
|
841 |
+
<div style="display: flex; flex-direction: column; gap: 8px;">
|
842 |
+
"""
|
843 |
+
|
844 |
+
# Add trends
|
845 |
+
for trend in trends:
|
846 |
+
html += f"""
|
847 |
+
<div style="display: flex; align-items: center; gap: 8px;">
|
848 |
+
<span style="color: #48bb78;">β</span>
|
849 |
+
<span>{trend}</span>
|
850 |
+
</div>
|
851 |
+
"""
|
852 |
+
|
853 |
+
html += """
|
854 |
+
</div>
|
855 |
+
</div>
|
856 |
+
|
857 |
+
<h3 style="margin-bottom: 10px;">Token Details & Historical Analysis</h3>
|
858 |
+
"""
|
859 |
+
|
860 |
+
# Add token details
|
861 |
+
for token in token_analysis:
|
862 |
+
html += f"""
|
863 |
+
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; margin-bottom: 15px;">
|
864 |
+
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 10px;">
|
865 |
+
<div style="display: flex; align-items: center; gap: 8px;">
|
866 |
+
<span style="font-size: 18px; font-weight: medium;">{token['token']}</span>
|
867 |
+
<span style="padding: 2px 8px; background-color: #edf2f7; border-radius: 4px; font-size: 12px;">{token['posTag']}</span>
|
868 |
+
"""
|
869 |
+
|
870 |
+
if token['entityType']:
|
871 |
+
html += f"""
|
872 |
+
<span style="padding: 2px 8px; background-color: #ebf8ff; color: #3182ce; border-radius: 4px; font-size: 12px; display: flex; align-items: center;">
|
873 |
+
β {token['entityType']}
|
874 |
+
</span>
|
875 |
+
"""
|
876 |
+
|
877 |
+
html += f"""
|
878 |
+
</div>
|
879 |
+
<div style="display: flex; align-items: center; gap: 4px;">
|
880 |
+
<span style="font-size: 12px; color: #718096;">Importance:</span>
|
881 |
+
<div style="width: 64px; height: 8px; background-color: #edf2f7; border-radius: 4px; overflow: hidden;">
|
882 |
+
<div style="height: 100%; background-color: #4299e1; width: {token['importance']}%;"></div>
|
883 |
+
</div>
|
884 |
+
</div>
|
885 |
+
</div>
|
886 |
+
|
887 |
+
<div style="margin-top: 15px;">
|
888 |
+
<div style="font-size: 12px; color: #718096; margin-bottom: 4px;">Historical Relevance:</div>
|
889 |
+
<div style="border: 1px solid #e2e8f0; border-radius: 4px; padding: 10px; background-color: #f7fafc;">
|
890 |
+
<div style="font-size: 12px; margin-bottom: 8px;">
|
891 |
+
<span style="font-weight: 500;">Origin: </span>
|
892 |
+
<span>{token['origin']['era']}, </span>
|
893 |
+
<span style="font-style: italic;">{token['origin']['language']}</span>
|
894 |
+
</div>
|
895 |
+
<div style="font-size: 12px; margin-bottom: 12px;">{token['origin']['note']}</div>
|
896 |
+
|
897 |
+
<div style="display: flex; align-items: flex-end; height: 50px; gap: 4px; margin-top: 8px;">
|
898 |
+
"""
|
899 |
+
|
900 |
+
# Add historical data bars
|
901 |
+
for period, value in token['historicalData']:
|
902 |
+
opacity = 0.3 + (token['historicalData'].index((period, value)) * 0.1)
|
903 |
+
html += f"""
|
904 |
+
<div style="display: flex; flex-direction: column; align-items: center; flex: 1;">
|
905 |
+
<div style="width: 100%; background-color: rgba(66, 153, 225, {opacity}); border-radius: 2px 2px 0 0; height: {max(4, value)}%;"></div>
|
906 |
+
<div style="font-size: 9px; margin-top: 4px; color: #718096; transform: rotate(45deg); transform-origin: top left; white-space: nowrap;">
|
907 |
+
{period}
|
908 |
+
</div>
|
909 |
+
</div>
|
910 |
+
"""
|
911 |
+
|
912 |
+
html += """
|
913 |
+
</div>
|
914 |
+
</div>
|
915 |
+
</div>
|
916 |
+
</div>
|
917 |
+
"""
|
918 |
+
|
919 |
+
html += """
|
920 |
+
</div>
|
921 |
+
"""
|
922 |
+
|
923 |
+
return html
|
924 |
|
925 |
+
def analyze_keyword(keyword, forecast_months=6, growth_scenario="Moderate", get_serp=False, progress=gr.Progress()):
|
926 |
+
"""Main function to analyze a keyword"""
|
927 |
+
if not keyword or not keyword.strip():
|
928 |
+
return (
|
929 |
+
"<div>Please enter a keyword to analyze</div>",
|
930 |
+
"<div>Please enter a keyword to analyze</div>",
|
931 |
+
None,
|
932 |
+
None,
|
933 |
+
None,
|
934 |
+
None,
|
935 |
+
None
|
936 |
+
)
|
937 |
+
|
938 |
+
progress(0.1, desc="Starting analysis...")
|
939 |
+
|
940 |
+
# Load models if not already loaded
|
941 |
+
model_status = load_models(progress)
|
942 |
+
if isinstance(model_status, str) and model_status.startswith("Error"):
|
943 |
+
return (
|
944 |
+
f"<div style='color:red;'>{model_status}</div>",
|
945 |
+
f"<div style='color:red;'>{model_status}</div>",
|
946 |
+
None,
|
947 |
+
None,
|
948 |
+
None,
|
949 |
+
None,
|
950 |
+
None
|
951 |
+
)
|
952 |
+
|
953 |
+
try:
|
954 |
+
# Basic tokenization - just split on spaces for simplicity
|
955 |
+
words = keyword.strip().lower().split()
|
956 |
+
progress(0.2, desc="Analyzing tokens...")
|
957 |
+
|
958 |
+
# Get token types
|
959 |
+
token_analysis = analyze_token_types(words)
|
960 |
+
|
961 |
+
progress(0.3, desc="Running NER...")
|
962 |
+
# Get NER tags - handle potential errors
|
963 |
+
try:
|
964 |
+
ner_results = ner_pipeline(keyword)
|
965 |
+
except Exception as e:
|
966 |
+
print(f"NER error: {str(e)}")
|
967 |
+
ner_results = []
|
968 |
+
|
969 |
+
progress(0.4, desc="Running POS tagging...")
|
970 |
+
# Get POS tags - handle potential errors
|
971 |
+
try:
|
972 |
+
pos_results = pos_pipeline(keyword)
|
973 |
+
except Exception as e:
|
974 |
+
print(f"POS error: {str(e)}")
|
975 |
+
pos_results = []
|
976 |
+
|
977 |
+
# Process and organize results
|
978 |
+
full_token_analysis = []
|
979 |
+
for token in token_analysis:
|
980 |
+
# Find POS tag for this token
|
981 |
+
pos_tag = "NOUN" # Default
|
982 |
+
for pos_result in pos_results:
|
983 |
+
if pos_result["word"].lower() == token["text"]:
|
984 |
+
pos_tag = pos_result["entity"]
|
985 |
+
break
|
986 |
+
|
987 |
+
# Find entity type if any
|
988 |
+
entity_type = None
|
989 |
+
for ner_result in ner_results:
|
990 |
+
if ner_result["word"].lower() == token["text"]:
|
991 |
+
entity_type = ner_result["entity"]
|
992 |
+
break
|
993 |
+
|
994 |
+
# Generate historical data
|
995 |
+
historical_data = simulate_historical_data(token["text"])
|
996 |
+
|
997 |
+
# Generate origin data
|
998 |
+
origin = generate_origin_data(token["text"])
|
999 |
+
|
1000 |
+
# Calculate importance (simplified algorithm)
|
1001 |
+
importance = 60 + (len(token["text"]) * 2)
|
1002 |
+
importance = min(95, importance)
|
1003 |
+
|
1004 |
+
# Generate more meaningful related terms using semantic similarity
|
1005 |
+
if semantic_model is not None:
|
1006 |
+
try:
|
1007 |
+
# Generate some potential related terms
|
1008 |
+
prefix_related = [f"about {token['text']}", f"what is {token['text']}", f"how to {token['text']}"]
|
1009 |
+
synonym_candidates = ["similar", "equivalent", "comparable", "like", "related", "alternative"]
|
1010 |
+
domain_terms = ["software", "marketing", "business", "science", "education", "technology"]
|
1011 |
+
comparison_terms = prefix_related + synonym_candidates + domain_terms
|
1012 |
+
|
1013 |
+
# Get similarities
|
1014 |
+
similarities = get_semantic_similarity(token['text'], comparison_terms)
|
1015 |
+
|
1016 |
+
# Use top 3 most similar terms
|
1017 |
+
related_terms = [term for term, score in similarities[:3]]
|
1018 |
+
except Exception as e:
|
1019 |
+
print(f"Error generating semantic related terms: {str(e)}")
|
1020 |
+
related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"]
|
1021 |
+
else:
|
1022 |
+
# Fallback if semantic model isn't loaded
|
1023 |
+
related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"]
|
1024 |
+
|
1025 |
+
full_token_analysis.append({
|
1026 |
+
"token": token["text"],
|
1027 |
+
"type": token["type"],
|
1028 |
+
"posTag": pos_tag,
|
1029 |
+
"entityType": entity_type,
|
1030 |
+
"importance": importance,
|
1031 |
+
"historicalData": historical_data,
|
1032 |
+
"origin": origin,
|
1033 |
+
"relatedTerms": related_terms
|
1034 |
+
})
|
1035 |
+
|
1036 |
+
progress(0.5, desc="Analyzing intent...")
|
1037 |
+
# Intent analysis - handle potential errors
|
1038 |
+
try:
|
1039 |
+
intent_result = intent_classifier(
|
1040 |
+
keyword,
|
1041 |
+
candidate_labels=["informational", "navigational", "transactional"]
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
intent_analysis = {
|
1045 |
+
"type": intent_result["labels"][0].capitalize(),
|
1046 |
+
"strength": round(intent_result["scores"][0] * 100),
|
1047 |
+
"mutations": [
|
1048 |
+
f"{intent_result['labels'][0]}-variation-1",
|
1049 |
+
f"{intent_result['labels'][0]}-variation-2"
|
1050 |
+
]
|
1051 |
+
}
|
1052 |
+
except Exception as e:
|
1053 |
+
print(f"Intent classification error: {str(e)}")
|
1054 |
+
intent_analysis = {
|
1055 |
+
"type": "Informational", # Default fallback
|
1056 |
+
"strength": 70,
|
1057 |
+
"mutations": ["fallback-variation-1", "fallback-variation-2"]
|
1058 |
+
}
|
1059 |
+
|
1060 |
+
# Evolution potential (simplified calculation)
|
1061 |
+
evolution_potential = min(95, 65 + (len(keyword) % 30))
|
1062 |
+
|
1063 |
+
# Predicted trends (simplified)
|
1064 |
+
trends = [
|
1065 |
+
"Voice search adaptation",
|
1066 |
+
"Visual search integration"
|
1067 |
+
]
|
1068 |
+
|
1069 |
+
# Generate more realistic and keyword-specific evolution data
|
1070 |
+
base_volume = 1000 + (len(keyword) * 100)
|
1071 |
+
|
1072 |
+
# Adjust growth factor based on scenario
|
1073 |
+
if growth_scenario == "Conservative":
|
1074 |
+
growth_factor = 1.05 + (0.02 * (sum(ord(c) for c in keyword) % 5))
|
1075 |
+
elif growth_scenario == "Aggressive":
|
1076 |
+
growth_factor = 1.15 + (0.05 * (sum(ord(c) for c in keyword) % 5))
|
1077 |
+
else: # Moderate
|
1078 |
+
growth_factor = 1.1 + (0.03 * (sum(ord(c) for c in keyword) % 5))
|
1079 |
+
|
1080 |
+
evolution_data = []
|
1081 |
+
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"][:int(forecast_months)]
|
1082 |
+
current_volume = base_volume
|
1083 |
+
|
1084 |
+
for month in months:
|
1085 |
+
# Add some randomness to make it look more realistic
|
1086 |
+
np.random.seed(sum(ord(c) for c in month + keyword))
|
1087 |
+
random_factor = 0.9 + (0.2 * np.random.random())
|
1088 |
+
current_volume *= growth_factor * random_factor
|
1089 |
+
|
1090 |
+
evolution_data.append({
|
1091 |
+
"month": month,
|
1092 |
+
"searchVolume": int(current_volume),
|
1093 |
+
"competitionScore": min(95, 45 + (months.index(month) * 3) + (sum(ord(c) for c in keyword) % 10)),
|
1094 |
+
"intentClarity": min(95, 80 + (months.index(month) * 2) + (sum(ord(c) for c in keyword) % 5))
|
1095 |
+
})
|
1096 |
+
|
1097 |
+
progress(0.6, desc="Creating visualizations...")
|
1098 |
+
# Create interactive evolution chart
|
1099 |
+
evolution_chart = create_evolution_chart(evolution_data, forecast_months, growth_scenario)
|
1100 |
+
|
1101 |
+
# SERP results and ranking history (new feature)
|
1102 |
+
serp_results = None
|
1103 |
+
ranking_chart = None
|
1104 |
+
serp_html = None
|
1105 |
+
|
1106 |
+
if get_serp:
|
1107 |
+
progress(0.7, desc="Fetching SERP data...")
|
1108 |
+
# Get SERP results
|
1109 |
+
serp_results = simulate_google_serp(keyword)
|
1110 |
+
|
1111 |
+
# Update ranking history
|
1112 |
+
update_ranking_history(keyword, serp_results)
|
1113 |
+
|
1114 |
+
progress(0.8, desc="Creating ranking charts...")
|
1115 |
+
# Create ranking history chart
|
1116 |
+
if keyword in ranking_history and len(ranking_history[keyword]) > 0:
|
1117 |
+
ranking_chart = create_ranking_history_chart(ranking_history[keyword])
|
1118 |
+
|
1119 |
+
# Generate SERP HTML
|
1120 |
+
serp_html = generate_serp_html(keyword, serp_results)
|
1121 |
+
|
1122 |
+
# Generate HTML for token visualization
|
1123 |
+
token_viz_html = generate_token_visualization_html(token_analysis, full_token_analysis)
|
1124 |
+
|
1125 |
+
# Generate HTML for full analysis
|
1126 |
+
analysis_html = generate_full_analysis_html(
|
1127 |
+
keyword,
|
1128 |
+
full_token_analysis,
|
1129 |
+
intent_analysis,
|
1130 |
+
evolution_potential,
|
1131 |
+
trends
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
# Generate JSON results
|
1135 |
+
json_results = {
|
1136 |
+
"keyword": keyword,
|
1137 |
+
"tokenAnalysis": full_token_analysis,
|
1138 |
+
"intentAnalysis": intent_analysis,
|
1139 |
+
"evolutionPotential": evolution_potential,
|
1140 |
+
"predictedTrends": trends,
|
1141 |
+
"forecast": {
|
1142 |
+
"months": forecast_months,
|
1143 |
+
"scenario": growth_scenario,
|
1144 |
+
"data": evolution_data
|
1145 |
+
},
|
1146 |
+
"serpResults": serp_results
|
1147 |
+
}
|
1148 |
+
|
1149 |
+
progress(1.0, desc="Analysis complete!")
|
1150 |
+
return token_viz_html, analysis_html, json_results, evolution_chart, serp_html, ranking_chart, keyword
|
1151 |
+
|
1152 |
+
except Exception as e:
|
1153 |
+
error_message = f"<div style='color:red;padding:20px;'>Error analyzing keyword: {str(e)}</div>"
|
1154 |
+
print(f"Error in analyze_keyword: {str(e)}")
|
1155 |
+
return error_message, error_message, None, None, None, None, None
|
1156 |
|
1157 |
+
# Create the Gradio interface with AI Snipper styling
|
1158 |
with gr.Blocks(
|
1159 |
css=ai_snipper_css,
|
1160 |
title="𧬠AI Snipper Keyword DNA Analyzer",
|
|
|
1168 |
|
1169 |
# Custom header with DNA theme
|
1170 |
gr.HTML("""
|
1171 |
+
<div style="text-align: center; padding: 2rem 0; margin-bottom: 2rem;">
|
1172 |
+
<h1 style="font-size: 3rem; font-weight: 800; margin-bottom: 1rem; background: linear-gradient(135deg, #06b6d4, #3b82f6, #8b5cf6); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text;">
|
1173 |
+
𧬠Keyword DNA Analyzer
|
1174 |
+
</h1>
|
1175 |
+
<p style="font-size: 1.2rem; color: #94a3b8; margin-top: 1rem; font-weight: 400;">
|
1176 |
Decode the genetic structure of your keywords with AI-powered analysis
|
1177 |
</p>
|
1178 |
</div>
|
|
|
1223 |
|
1224 |
# Status indicator with custom styling
|
1225 |
status_html = gr.HTML(
|
1226 |
+
'<div style="text-align: center; padding: 1rem; border-radius: 8px; margin: 1rem 0; font-weight: 500; background: rgba(6, 182, 212, 0.1); border: 1px solid #06b6d4; color: #06b6d4;">π Enter a keyword and click "Analyze DNA" to begin</div>'
|
1227 |
)
|
1228 |
|
1229 |
# Main analyze button
|
1230 |
analyze_btn = gr.Button(
|
1231 |
"𧬠Analyze DNA",
|
1232 |
+
variant="primary"
|
|
|
1233 |
)
|
1234 |
|
1235 |
# Example buttons with custom styling
|
1236 |
gr.Markdown("### π‘ Try These Examples")
|
1237 |
+
with gr.Row():
|
1238 |
example_btns = []
|
1239 |
examples = [
|
1240 |
"preprocessing",
|
|
|
1266 |
with gr.Tab("πΎ Raw Data"):
|
1267 |
json_output = gr.JSON()
|
1268 |
|
1269 |
+
# Event handlers
|
1270 |
voice_submit_btn.click(
|
1271 |
handle_voice_input,
|
1272 |
inputs=[audio_input],
|
|
|
1275 |
|
1276 |
# Updated status messages with custom styling
|
1277 |
analyze_btn.click(
|
1278 |
+
lambda: '<div style="text-align: center; padding: 1rem; border-radius: 8px; margin: 1rem 0; font-weight: 500; background: rgba(6, 182, 212, 0.1); border: 1px solid #06b6d4; color: #06b6d4;">π Loading models and analyzing... This may take a moment.</div>',
|
1279 |
outputs=status_html
|
1280 |
).then(
|
1281 |
analyze_keyword,
|
1282 |
inputs=[input_text, forecast_months, growth_scenario, include_serp],
|
1283 |
outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text]
|
1284 |
).then(
|
1285 |
+
lambda: '<div style="text-align: center; padding: 1rem; border-radius: 8px; margin: 1rem 0; font-weight: 500; background: rgba(20, 184, 166, 0.1); border: 1px solid #14b8a6; color: #14b8a6;">β
Analysis complete! Check the results above.</div>',
|
1286 |
outputs=status_html
|
1287 |
)
|
1288 |
|
|
|
1297 |
inputs=[btn],
|
1298 |
outputs=[input_text]
|
1299 |
).then(
|
1300 |
+
lambda: '<div style="text-align: center; padding: 1rem; border-radius: 8px; margin: 1rem 0; font-weight: 500; background: rgba(6, 182, 212, 0.1); border: 1px solid #06b6d4; color: #06b6d4;">π Loading models and analyzing... This may take a moment.</div>',
|
1301 |
outputs=status_html
|
1302 |
).then(
|
1303 |
analyze_keyword,
|
1304 |
inputs=[input_text, forecast_months, growth_scenario, include_serp],
|
1305 |
outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text]
|
1306 |
).then(
|
1307 |
+
lambda: '<div style="text-align: center; padding: 1rem; border-radius: 8px; margin: 1rem 0; font-weight: 500; background: rgba(20, 184, 166, 0.1); border: 1px solid #14b8a6; color: #14b8a6;">β
Analysis complete! Check the results above.</div>',
|
1308 |
outputs=status_html
|
1309 |
)
|
1310 |
|
1311 |
# Launch configuration
|
1312 |
if __name__ == "__main__":
|
1313 |
+
demo.launch()
|
|
|
|
|
|
|
|