Spaces:
Runtime error
Runtime error
Update app.py
Browse filesnew css interface using aisnipper colors
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
@@ -11,1072 +12,573 @@ import datetime
|
|
11 |
import plotly.graph_objects as go
|
12 |
from plotly.subplots import make_subplots
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
progress(0.2, desc="Loading tokenizer...")
|
41 |
-
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
42 |
-
|
43 |
-
progress(0.3, desc="Loading NER model...")
|
44 |
-
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")
|
45 |
-
|
46 |
-
progress(0.4, desc="Loading POS model...")
|
47 |
-
# Use smaller POS model
|
48 |
-
from transformers import AutoModelForTokenClassification, BertTokenizerFast
|
49 |
-
pos_model = AutoModelForTokenClassification.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos")
|
50 |
-
pos_tokenizer = BertTokenizerFast.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos")
|
51 |
-
pos_pipeline = pipeline("token-classification", model=pos_model, tokenizer=pos_tokenizer)
|
52 |
-
|
53 |
-
progress(0.6, desc="Loading intent classifier...")
|
54 |
-
# Use a smaller model for zero-shot classification
|
55 |
-
intent_classifier = pipeline(
|
56 |
-
"zero-shot-classification",
|
57 |
-
model="typeform/distilbert-base-uncased-mnli", # Smaller than BART
|
58 |
-
device=0 if torch.cuda.is_available() else -1 # Use GPU if available
|
59 |
-
)
|
60 |
-
|
61 |
-
progress(0.7, desc="Loading speech-to-text model...")
|
62 |
-
try:
|
63 |
-
# Load automatic speech recognition model
|
64 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
65 |
-
processor = WhisperProcessor.from_pretrained("openai/whisper-small.en")
|
66 |
-
stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small.en")
|
67 |
-
stt_model = (processor, stt_model)
|
68 |
-
except Exception as e:
|
69 |
-
print(f"Warning: Could not load speech-to-text model: {str(e)}")
|
70 |
-
stt_model = None # Set to None so we can check if it's available
|
71 |
-
|
72 |
-
progress(0.8, desc="Loading semantic model...")
|
73 |
-
try:
|
74 |
-
from sentence_transformers import SentenceTransformer
|
75 |
-
semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
|
76 |
-
except Exception as e:
|
77 |
-
print(f"Warning: Could not load semantic model: {str(e)}")
|
78 |
-
semantic_model = None # Set to None so we can check if it's available
|
79 |
-
|
80 |
-
progress(1.0, desc="Models loaded successfully!")
|
81 |
-
models_loaded = True
|
82 |
-
return True
|
83 |
-
|
84 |
-
except Exception as e:
|
85 |
-
print(f"Error loading models: {str(e)}")
|
86 |
-
return f"Error: {str(e)}"
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
try:
|
94 |
-
import librosa
|
95 |
-
import numpy as np
|
96 |
-
|
97 |
-
# Load audio file
|
98 |
-
audio, sr = librosa.load(audio_path, sr=16000)
|
99 |
-
|
100 |
-
# Process audio with Whisper
|
101 |
-
processor, model = stt_model
|
102 |
-
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
|
103 |
-
|
104 |
-
# Generate token ids
|
105 |
-
predicted_ids = model.generate(input_features)
|
106 |
-
|
107 |
-
# Decode token ids to text
|
108 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
109 |
-
|
110 |
-
return transcription
|
111 |
-
except Exception as e:
|
112 |
-
print(f"Error in speech_to_text: {str(e)}")
|
113 |
-
return f"Error processing speech: {str(e)}"
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
return text
|
124 |
-
except Exception as e:
|
125 |
-
print(f"Error in handle_voice_input: {str(e)}")
|
126 |
-
return f"Error: {str(e)}"
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
np.random.seed(sum(ord(c) for c in keyword))
|
136 |
-
|
137 |
-
serp_results = []
|
138 |
-
domains = [
|
139 |
-
"example.com", "wikipedia.org", "medium.com", "github.com",
|
140 |
-
"stackoverflow.com", "amazon.com", "youtube.com", "reddit.com",
|
141 |
-
"linkedin.com", "twitter.com", "facebook.com", "instagram.com"
|
142 |
-
]
|
143 |
-
|
144 |
-
for i in range(1, num_results + 1):
|
145 |
-
domain = domains[i % len(domains)]
|
146 |
-
title = f"{keyword.title()} - {domain.split('.')[0].title()} Resource #{i}"
|
147 |
-
snippet = f"This is a simulated SERP result for '{keyword}'. Result #{i} would provide relevant information about this topic."
|
148 |
-
url = f"https://www.{domain}/{keyword.replace(' ', '-')}-resource-{i}"
|
149 |
-
|
150 |
-
position = i
|
151 |
-
ctr = round(0.3 * (0.85 ** (i - 1)), 4) # Simulate click-through rate decay
|
152 |
-
|
153 |
-
serp_results.append({
|
154 |
-
"position": position,
|
155 |
-
"title": title,
|
156 |
-
"url": url,
|
157 |
-
"domain": domain,
|
158 |
-
"snippet": snippet,
|
159 |
-
"ctr_estimate": ctr,
|
160 |
-
"impressions_estimate": np.random.randint(1000, 10000)
|
161 |
-
})
|
162 |
-
|
163 |
-
return serp_results
|
164 |
-
except Exception as e:
|
165 |
-
print(f"Error in simulate_google_serp: {str(e)}")
|
166 |
-
return []
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
# Add new entry
|
179 |
-
ranking_history[keyword].append({
|
180 |
-
"timestamp": timestamp,
|
181 |
-
"results": serp_results[:5] # Store top 5 results for history
|
182 |
-
})
|
183 |
-
|
184 |
-
# Keep only last 10 entries for each keyword
|
185 |
-
if len(ranking_history[keyword]) > 10:
|
186 |
-
ranking_history[keyword] = ranking_history[keyword][-10:]
|
187 |
-
|
188 |
-
return True
|
189 |
-
except Exception as e:
|
190 |
-
print(f"Error in update_ranking_history: {str(e)}")
|
191 |
-
return False
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
token_embedding = semantic_model.encode([token])[0]
|
199 |
-
comparison_embeddings = semantic_model.encode(comparison_terms)
|
200 |
-
|
201 |
-
similarities = []
|
202 |
-
for i, emb in enumerate(comparison_embeddings):
|
203 |
-
similarity = cosine_similarity([token_embedding], [emb])[0][0]
|
204 |
-
similarities.append((comparison_terms[i], float(similarity)))
|
205 |
-
|
206 |
-
return sorted(similarities, key=lambda x: x[1], reverse=True)
|
207 |
-
except Exception as e:
|
208 |
-
print(f"Error in semantic similarity: {str(e)}")
|
209 |
-
# Return dummy data on error
|
210 |
-
return [(term, 0.5) for term in comparison_terms]
|
211 |
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
"suffix": "#AEDAA4", # Light green
|
216 |
-
"stem": "#A4C2F4", # Light blue
|
217 |
-
"compound_first": "#FFCC80", # Light orange
|
218 |
-
"compound_second": "#FFCC80", # Light orange
|
219 |
-
"word": "#E5E5E5" # Light gray
|
220 |
-
}
|
221 |
-
return colors.get(token_type, "#E5E5E5")
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
# Possibly a technical term - recent growth
|
230 |
-
values = [10, 20, 30, 60, 85, 95]
|
231 |
-
elif token.startswith(("un", "re", "de", "pre")):
|
232 |
-
# Prefix words tend to be older
|
233 |
-
values = [45, 50, 60, 70, 75, 80]
|
234 |
-
else:
|
235 |
-
# Standard pattern for common words
|
236 |
-
# Use token hash value modulo instead of hash() directly to avoid different results across runs
|
237 |
-
base = 50 + (sum(ord(c) for c in token) % 30)
|
238 |
-
# Use a fixed seed for reproducibility
|
239 |
-
np.random.seed(sum(ord(c) for c in token))
|
240 |
-
noise = np.random.normal(0, 5, 6)
|
241 |
-
values = [max(5, min(95, base + i*5 + n)) for i, n in enumerate(noise)]
|
242 |
-
|
243 |
-
return list(zip(eras, values))
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
# Deterministic selection based on the token
|
258 |
-
index = sum(ord(c) for c in token) % len(origins)
|
259 |
-
origin = origins[index]
|
260 |
-
|
261 |
-
note = f"First appeared in {origin['era']} texts derived from {origin['language']}."
|
262 |
-
origin["note"] = note
|
263 |
-
|
264 |
-
return origin
|
265 |
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
suffixes = ["ing", "ed", "ly", "ment", "tion", "able", "ible", "ness", "ful", "less"]
|
272 |
-
|
273 |
-
for token in tokens:
|
274 |
-
token_text = token.lower()
|
275 |
-
token_type = "word"
|
276 |
-
|
277 |
-
# Check for prefixes
|
278 |
-
for prefix in prefixes:
|
279 |
-
if token_text.startswith(prefix) and len(token_text) > len(prefix) + 2:
|
280 |
-
if token_text != prefix: # Make sure the word isn't just the prefix
|
281 |
-
token_type = "prefix"
|
282 |
-
break
|
283 |
-
|
284 |
-
# Check for suffixes
|
285 |
-
if token_type == "word":
|
286 |
-
for suffix in suffixes:
|
287 |
-
if token_text.endswith(suffix) and len(token_text) > len(suffix) + 2:
|
288 |
-
token_type = "suffix"
|
289 |
-
break
|
290 |
-
|
291 |
-
# Check for compound words (simplified)
|
292 |
-
if token_type == "word" and len(token_text) > 8:
|
293 |
-
token_type = "compound_first" # Simplified - in reality would need more analysis
|
294 |
-
|
295 |
-
processed_tokens.append({
|
296 |
-
"text": token_text,
|
297 |
-
"type": token_type
|
298 |
-
})
|
299 |
-
|
300 |
-
return processed_tokens
|
301 |
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
plt.figure(figsize=(8, 3))
|
309 |
-
plt.bar(eras, values, color='skyblue')
|
310 |
-
plt.title('Historical Usage')
|
311 |
-
plt.xlabel('Era')
|
312 |
-
plt.ylabel('Usage Level')
|
313 |
-
plt.ylim(0, 100)
|
314 |
-
plt.xticks(rotation=45)
|
315 |
-
plt.tight_layout()
|
316 |
-
|
317 |
-
return plt
|
318 |
-
except Exception as e:
|
319 |
-
print(f"Error in plot_historical_data: {str(e)}")
|
320 |
-
# Return a simple error plot
|
321 |
-
plt.figure(figsize=(8, 3))
|
322 |
-
plt.text(0.5, 0.5, f"Error creating plot: {str(e)}",
|
323 |
-
horizontalalignment='center', verticalalignment='center')
|
324 |
-
plt.axis('off')
|
325 |
-
return plt
|
326 |
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
# Create a basic figure without subplots
|
333 |
-
fig = go.Figure()
|
334 |
-
|
335 |
-
# Add main trace for search volume
|
336 |
-
fig.add_trace(
|
337 |
-
go.Scatter(
|
338 |
-
x=[item["month"] for item in data],
|
339 |
-
y=[item["searchVolume"] for item in data],
|
340 |
-
name="Search Volume",
|
341 |
-
line=dict(color="#8884d8", width=3),
|
342 |
-
mode="lines+markers"
|
343 |
-
)
|
344 |
-
)
|
345 |
-
|
346 |
-
# Scale the other metrics to be visible on the same chart
|
347 |
-
max_volume = max([item["searchVolume"] for item in data])
|
348 |
-
scale_factor = max_volume / 100
|
349 |
-
|
350 |
-
# Add competition score (scaled)
|
351 |
-
fig.add_trace(
|
352 |
-
go.Scatter(
|
353 |
-
x=[item["month"] for item in data],
|
354 |
-
y=[item["competitionScore"] * scale_factor for item in data],
|
355 |
-
name="Competition Score",
|
356 |
-
line=dict(color="#82ca9d", width=2, dash="dot"),
|
357 |
-
mode="lines+markers"
|
358 |
-
)
|
359 |
-
)
|
360 |
-
|
361 |
-
# Add intent clarity (scaled)
|
362 |
-
fig.add_trace(
|
363 |
-
go.Scatter(
|
364 |
-
x=[item["month"] for item in data],
|
365 |
-
y=[item["intentClarity"] * scale_factor for item in data],
|
366 |
-
name="Intent Clarity",
|
367 |
-
line=dict(color="#ffc658", width=2, dash="dash"),
|
368 |
-
mode="lines+markers"
|
369 |
-
)
|
370 |
-
)
|
371 |
-
|
372 |
-
# Simple layout
|
373 |
-
fig.update_layout(
|
374 |
-
title=f"Keyword Evolution Forecast ({growth_scenario} Growth)",
|
375 |
-
xaxis_title="Month",
|
376 |
-
yaxis_title="Value",
|
377 |
-
legend=dict(orientation="h", y=1.1),
|
378 |
-
height=500
|
379 |
-
)
|
380 |
-
|
381 |
-
return fig
|
382 |
-
|
383 |
-
except Exception as e:
|
384 |
-
print(f"Error in chart creation: {str(e)}")
|
385 |
-
# Fallback to an even simpler chart
|
386 |
-
fig = go.Figure(data=go.Scatter(x=[1, 2, 3], y=[4, 1, 2]))
|
387 |
-
fig.update_layout(title="Fallback Chart (Error occurred)")
|
388 |
-
return fig
|
389 |
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
annotations=[{
|
399 |
-
"text": "Need at least 2 data points for ranking history",
|
400 |
-
"showarrow": False,
|
401 |
-
"font": {"size": 16},
|
402 |
-
"xref": "paper",
|
403 |
-
"yref": "paper",
|
404 |
-
"x": 0.5,
|
405 |
-
"y": 0.5
|
406 |
-
}]
|
407 |
-
)
|
408 |
-
return fig
|
409 |
-
|
410 |
-
# Create a figure
|
411 |
-
fig = go.Figure()
|
412 |
-
|
413 |
-
# Extract timestamps and convert to datetime objects
|
414 |
-
timestamps = [entry["timestamp"] for entry in keyword_history]
|
415 |
-
dates = [datetime.datetime.strptime(ts, "%Y-%m-%d %H:%M:%S") for ts in timestamps]
|
416 |
-
|
417 |
-
# Get unique domains from all results
|
418 |
-
all_domains = set()
|
419 |
-
for entry in keyword_history:
|
420 |
-
for result in entry["results"]:
|
421 |
-
all_domains.add(result["domain"])
|
422 |
-
|
423 |
-
# Colors for different domains
|
424 |
-
domain_colors = {}
|
425 |
-
color_palette = [
|
426 |
-
"#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
|
427 |
-
"#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"
|
428 |
-
]
|
429 |
-
for i, domain in enumerate(all_domains):
|
430 |
-
domain_colors[domain] = color_palette[i % len(color_palette)]
|
431 |
-
|
432 |
-
# Track domains and their positions over time
|
433 |
-
domain_tracking = {domain: {"x": [], "y": [], "text": []} for domain in all_domains}
|
434 |
-
|
435 |
-
for i, entry in enumerate(keyword_history):
|
436 |
-
for result in entry["results"]:
|
437 |
-
domain = result["domain"]
|
438 |
-
position = result["position"]
|
439 |
-
title = result["title"]
|
440 |
-
|
441 |
-
domain_tracking[domain]["x"].append(dates[i])
|
442 |
-
domain_tracking[domain]["y"].append(position)
|
443 |
-
domain_tracking[domain]["text"].append(title)
|
444 |
-
|
445 |
-
# Add traces for each domain
|
446 |
-
for domain, data in domain_tracking.items():
|
447 |
-
if len(data["x"]) > 0: # Only add domains that have data
|
448 |
-
fig.add_trace(
|
449 |
-
go.Scatter(
|
450 |
-
x=data["x"],
|
451 |
-
y=data["y"],
|
452 |
-
mode="lines+markers",
|
453 |
-
name=domain,
|
454 |
-
line=dict(color=domain_colors[domain]),
|
455 |
-
hovertemplate="%{text}<br>Position: %{y}<br>Date: %{x}<extra></extra>",
|
456 |
-
text=data["text"],
|
457 |
-
marker=dict(size=8)
|
458 |
-
)
|
459 |
-
)
|
460 |
-
|
461 |
-
# Update layout
|
462 |
-
fig.update_layout(
|
463 |
-
title="Keyword Ranking History",
|
464 |
-
xaxis_title="Date",
|
465 |
-
yaxis_title="Position",
|
466 |
-
yaxis=dict(autorange="reversed"), # Invert y-axis so position 1 is on top
|
467 |
-
hovermode="closest",
|
468 |
-
height=500
|
469 |
-
)
|
470 |
-
|
471 |
-
return fig
|
472 |
-
|
473 |
-
except Exception as e:
|
474 |
-
print(f"Error in create_ranking_history_chart: {str(e)}")
|
475 |
-
# Return fallback chart
|
476 |
-
fig = go.Figure()
|
477 |
-
fig.update_layout(
|
478 |
-
title="Error Creating Ranking Chart",
|
479 |
-
annotations=[{
|
480 |
-
"text": f"Error: {str(e)}",
|
481 |
-
"showarrow": False,
|
482 |
-
"font": {"size": 14},
|
483 |
-
"xref": "paper",
|
484 |
-
"yref": "paper",
|
485 |
-
"x": 0.5,
|
486 |
-
"y": 0.5
|
487 |
-
}]
|
488 |
-
)
|
489 |
-
return fig
|
490 |
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
html = f"""
|
497 |
-
<div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;">
|
498 |
-
<h2 style="margin-top: 0;">SERP Results for "{keyword}"</h2>
|
499 |
-
|
500 |
-
<div style="background-color: #f5f5f5; padding: 10px; border-radius: 4px; margin-bottom: 20px;">
|
501 |
-
<div style="color: #666; font-size: 12px;">This is a simulated SERP. In a real application, this would use the Google API.</div>
|
502 |
-
</div>
|
503 |
-
|
504 |
-
<div class="serp-results" style="display: flex; flex-direction: column; gap: 16px;">
|
505 |
-
"""
|
506 |
-
|
507 |
-
for result in serp_results:
|
508 |
-
position = result["position"]
|
509 |
-
title = result["title"]
|
510 |
-
url = result["url"]
|
511 |
-
snippet = result["snippet"]
|
512 |
-
domain = result["domain"]
|
513 |
-
ctr = result["ctr_estimate"]
|
514 |
-
impressions = result["impressions_estimate"]
|
515 |
-
|
516 |
-
html += f"""
|
517 |
-
<div class="serp-result" style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; position: relative;">
|
518 |
-
<div style="position: absolute; top: -10px; left: -10px; background-color: #4299e1; color: white; width: 24px; height: 24px; border-radius: 50%; display: flex; align-items: center; justify-content: center; font-size: 12px;">
|
519 |
-
{position}
|
520 |
-
</div>
|
521 |
-
<div style="margin-bottom: 5px;">
|
522 |
-
<a href="#" style="font-size: 18px; color: #1a73e8; text-decoration: none; font-weight: 500;">{title}</a>
|
523 |
-
</div>
|
524 |
-
<div style="margin-bottom: 8px; color: #006621; font-size: 14px;">{url}</div>
|
525 |
-
<div style="color: #4d5156; font-size: 14px;">{snippet}</div>
|
526 |
-
|
527 |
-
<div style="display: flex; margin-top: 10px; font-size: 12px; color: #666;">
|
528 |
-
<div style="margin-right: 15px;"><span style="font-weight: 500;">CTR:</span> {ctr:.2%}</div>
|
529 |
-
<div><span style="font-weight: 500;">Est. Impressions:</span> {impressions:,}</div>
|
530 |
-
</div>
|
531 |
-
</div>
|
532 |
-
"""
|
533 |
-
|
534 |
-
html += """
|
535 |
-
</div>
|
536 |
-
</div>
|
537 |
-
"""
|
538 |
-
|
539 |
-
return html
|
540 |
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
<div style="margin-bottom: 20px; padding: 15px; background-color: #f8f9fa; border-radius: 6px;">
|
548 |
-
<div style="margin-bottom: 8px; font-weight: bold; color: #4a5568;">Human View:</div>
|
549 |
-
<div style="display: flex; flex-wrap: wrap; gap: 8px;">
|
550 |
-
"""
|
551 |
-
|
552 |
-
# Add human view tokens
|
553 |
-
for token in token_analysis:
|
554 |
-
html += f"""
|
555 |
-
<div style="padding: 6px 12px; background-color: white; border: 1px solid #cbd5e0; border-radius: 4px;">
|
556 |
-
{token['text']}
|
557 |
-
</div>
|
558 |
-
"""
|
559 |
-
|
560 |
-
html += """
|
561 |
-
</div>
|
562 |
-
</div>
|
563 |
-
|
564 |
-
<div style="text-align: center; margin: 15px 0;">
|
565 |
-
<span style="font-size: 20px;">β</span>
|
566 |
-
</div>
|
567 |
-
|
568 |
-
<div style="padding: 15px; background-color: #f0fff4; border-radius: 6px;">
|
569 |
-
<div style="margin-bottom: 8px; font-weight: bold; color: #2f855a;">Machine View:</div>
|
570 |
-
<div style="display: flex; flex-wrap: wrap; gap: 8px;">
|
571 |
-
"""
|
572 |
-
|
573 |
-
# Add machine view tokens
|
574 |
-
for token in full_analysis:
|
575 |
-
bg_color = get_token_colors(token["type"])
|
576 |
-
html += f"""
|
577 |
-
<div style="padding: 6px 12px; background-color: {bg_color}; border: 1px solid #a0aec0; border-radius: 4px; font-family: monospace;">
|
578 |
-
{token['token']}
|
579 |
-
<span style="font-size: 10px; opacity: 0.7; display: block;">{token['type']}</span>
|
580 |
-
</div>
|
581 |
-
"""
|
582 |
-
|
583 |
-
html += """
|
584 |
-
</div>
|
585 |
-
</div>
|
586 |
-
|
587 |
-
<div style="margin-top: 20px; display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; text-align: center;">
|
588 |
-
"""
|
589 |
-
|
590 |
-
# Add stats
|
591 |
-
word_count = len(token_analysis)
|
592 |
-
token_count = len(full_analysis)
|
593 |
-
ratio = round(token_count / max(1, word_count), 2)
|
594 |
-
|
595 |
-
html += f"""
|
596 |
-
<div style="background-color: #ebf8ff; padding: 10px; border-radius: 6px;">
|
597 |
-
<div style="font-size: 24px; font-weight: bold; color: #3182ce;">{word_count}</div>
|
598 |
-
<div style="font-size: 14px; color: #4299e1;">Words</div>
|
599 |
-
</div>
|
600 |
-
|
601 |
-
<div style="background-color: #f0fff4; padding: 10px; border-radius: 6px;">
|
602 |
-
<div style="font-size: 24px; font-weight: bold; color: #38a169;">{token_count}</div>
|
603 |
-
<div style="font-size: 14px; color: #48bb78;">Tokens</div>
|
604 |
-
</div>
|
605 |
-
|
606 |
-
<div style="background-color: #faf5ff; padding: 10px; border-radius: 6px;">
|
607 |
-
<div style="font-size: 24px; font-weight: bold; color: #805ad5;">{ratio}</div>
|
608 |
-
<div style="font-size: 14px; color: #9f7aea;">Tokens per Word</div>
|
609 |
-
</div>
|
610 |
-
"""
|
611 |
-
|
612 |
-
html += """
|
613 |
-
</div>
|
614 |
-
</div>
|
615 |
-
"""
|
616 |
-
|
617 |
-
return html
|
618 |
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
<h2 style="margin-top: 0;">Keyword DNA Analysis for: {keyword}</h2>
|
624 |
-
|
625 |
-
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 15px; margin-bottom: 20px;">
|
626 |
-
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px;">
|
627 |
-
<h3 style="margin-top: 0; font-size: 16px;">Intent Gene</h3>
|
628 |
-
<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">
|
629 |
-
<span>Type:</span>
|
630 |
-
<span>{intent_analysis['type']}</span>
|
631 |
-
</div>
|
632 |
-
<div style="display: flex; justify-content: space-between; align-items: center;">
|
633 |
-
<span>Strength:</span>
|
634 |
-
<div style="width: 120px; height: 8px; background-color: #edf2f7; border-radius: 4px; overflow: hidden;">
|
635 |
-
<div style="height: 100%; background-color: #48bb78; width: {intent_analysis['strength']}%;"></div>
|
636 |
-
</div>
|
637 |
-
</div>
|
638 |
-
</div>
|
639 |
-
|
640 |
-
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px;">
|
641 |
-
<h3 style="margin-top: 0; font-size: 16px;">Evolution Potential</h3>
|
642 |
-
<div style="display: flex; justify-content: center; align-items: center; height: 100px;">
|
643 |
-
<div style="position: relative; width: 100px; height: 100px;">
|
644 |
-
<div style="position: absolute; inset: 0; display: flex; align-items: center; justify-content: center;">
|
645 |
-
<span style="font-size: 24px; font-weight: bold;">{evolution_potential}</span>
|
646 |
-
</div>
|
647 |
-
<svg width="100" height="100" viewBox="0 0 36 36">
|
648 |
-
<path
|
649 |
-
d="M18 2.0845 a 15.9155 15.9155 0 0 1 0 31.831 a 15.9155 15.9155 0 0 1 0 -31.831"
|
650 |
-
fill="none"
|
651 |
-
stroke="#4CAF50"
|
652 |
-
stroke-width="3"
|
653 |
-
stroke-dasharray="{evolution_potential}, 100"
|
654 |
-
/>
|
655 |
-
</svg>
|
656 |
-
</div>
|
657 |
-
</div>
|
658 |
-
</div>
|
659 |
-
</div>
|
660 |
-
|
661 |
-
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; margin-bottom: 20px;">
|
662 |
-
<h3 style="margin-top: 0; font-size: 16px;">Future Mutations</h3>
|
663 |
-
<div style="display: flex; flex-direction: column; gap: 8px;">
|
664 |
-
"""
|
665 |
-
|
666 |
-
# Add trends
|
667 |
-
for trend in trends:
|
668 |
-
html += f"""
|
669 |
-
<div style="display: flex; align-items: center; gap: 8px;">
|
670 |
-
<span style="color: #48bb78;">β</span>
|
671 |
-
<span>{trend}</span>
|
672 |
-
</div>
|
673 |
-
"""
|
674 |
-
|
675 |
-
html += """
|
676 |
-
</div>
|
677 |
-
</div>
|
678 |
-
|
679 |
-
<h3 style="margin-bottom: 10px;">Token Details & Historical Analysis</h3>
|
680 |
-
"""
|
681 |
-
|
682 |
-
# Add token details
|
683 |
-
for token in token_analysis:
|
684 |
-
html += f"""
|
685 |
-
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; margin-bottom: 15px;">
|
686 |
-
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 10px;">
|
687 |
-
<div style="display: flex; align-items: center; gap: 8px;">
|
688 |
-
<span style="font-size: 18px; font-weight: medium;">{token['token']}</span>
|
689 |
-
<span style="padding: 2px 8px; background-color: #edf2f7; border-radius: 4px; font-size: 12px;">{token['posTag']}</span>
|
690 |
-
"""
|
691 |
-
|
692 |
-
if token['entityType']:
|
693 |
-
html += f"""
|
694 |
-
<span style="padding: 2px 8px; background-color: #ebf8ff; color: #3182ce; border-radius: 4px; font-size: 12px; display: flex; align-items: center;">
|
695 |
-
β {token['entityType']}
|
696 |
-
</span>
|
697 |
-
"""
|
698 |
-
|
699 |
-
html += f"""
|
700 |
-
</div>
|
701 |
-
<div style="display: flex; align-items: center; gap: 4px;">
|
702 |
-
<span style="font-size: 12px; color: #718096;">Importance:</span>
|
703 |
-
<div style="width: 64px; height: 8px; background-color: #edf2f7; border-radius: 4px; overflow: hidden;">
|
704 |
-
<div style="height: 100%; background-color: #4299e1; width: {token['importance']}%;"></div>
|
705 |
-
</div>
|
706 |
-
</div>
|
707 |
-
</div>
|
708 |
-
|
709 |
-
<div style="margin-top: 15px;">
|
710 |
-
<div style="font-size: 12px; color: #718096; margin-bottom: 4px;">Historical Relevance:</div>
|
711 |
-
<div style="border: 1px solid #e2e8f0; border-radius: 4px; padding: 10px; background-color: #f7fafc;">
|
712 |
-
<div style="font-size: 12px; margin-bottom: 8px;">
|
713 |
-
<span style="font-weight: 500;">Origin: </span>
|
714 |
-
<span>{token['origin']['era']}, </span>
|
715 |
-
<span style="font-style: italic;">{token['origin']['language']}</span>
|
716 |
-
</div>
|
717 |
-
<div style="font-size: 12px; margin-bottom: 12px;">{token['origin']['note']}</div>
|
718 |
-
|
719 |
-
<div style="display: flex; align-items: flex-end; height: 50px; gap: 4px; margin-top: 8px;">
|
720 |
-
"""
|
721 |
-
|
722 |
-
# Add historical data bars
|
723 |
-
for period, value in token['historicalData']:
|
724 |
-
opacity = 0.3 + (token['historicalData'].index((period, value)) * 0.1)
|
725 |
-
html += f"""
|
726 |
-
<div style="display: flex; flex-direction: column; align-items: center; flex: 1;">
|
727 |
-
<div style="width: 100%; background-color: rgba(66, 153, 225, {opacity}); border-radius: 2px 2px 0 0; height: {max(4, value)}%;"></div>
|
728 |
-
<div style="font-size: 9px; margin-top: 4px; color: #718096; transform: rotate(45deg); transform-origin: top left; white-space: nowrap;">
|
729 |
-
{period}
|
730 |
-
</div>
|
731 |
-
</div>
|
732 |
-
"""
|
733 |
-
|
734 |
-
html += """
|
735 |
-
</div>
|
736 |
-
</div>
|
737 |
-
</div>
|
738 |
-
</div>
|
739 |
-
"""
|
740 |
-
|
741 |
-
html += """
|
742 |
-
</div>
|
743 |
-
"""
|
744 |
-
|
745 |
-
return html
|
746 |
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
774 |
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
# Get token types
|
781 |
-
token_analysis = analyze_token_types(words)
|
782 |
-
|
783 |
-
progress(0.3, desc="Running NER...")
|
784 |
-
# Get NER tags - handle potential errors
|
785 |
-
try:
|
786 |
-
ner_results = ner_pipeline(keyword)
|
787 |
-
except Exception as e:
|
788 |
-
print(f"NER error: {str(e)}")
|
789 |
-
ner_results = []
|
790 |
-
|
791 |
-
progress(0.4, desc="Running POS tagging...")
|
792 |
-
# Get POS tags - handle potential errors
|
793 |
-
try:
|
794 |
-
pos_results = pos_pipeline(keyword)
|
795 |
-
except Exception as e:
|
796 |
-
print(f"POS error: {str(e)}")
|
797 |
-
pos_results = []
|
798 |
-
|
799 |
-
# Process and organize results
|
800 |
-
full_token_analysis = []
|
801 |
-
for token in token_analysis:
|
802 |
-
# Find POS tag for this token
|
803 |
-
pos_tag = "NOUN" # Default
|
804 |
-
for pos_result in pos_results:
|
805 |
-
if pos_result["word"].lower() == token["text"]:
|
806 |
-
pos_tag = pos_result["entity"]
|
807 |
-
break
|
808 |
-
|
809 |
-
# Find entity type if any
|
810 |
-
entity_type = None
|
811 |
-
for ner_result in ner_results:
|
812 |
-
if ner_result["word"].lower() == token["text"]:
|
813 |
-
entity_type = ner_result["entity"]
|
814 |
-
break
|
815 |
-
|
816 |
-
# Generate historical data
|
817 |
-
historical_data = simulate_historical_data(token["text"])
|
818 |
-
|
819 |
-
# Generate origin data
|
820 |
-
origin = generate_origin_data(token["text"])
|
821 |
-
|
822 |
-
# Calculate importance (simplified algorithm)
|
823 |
-
importance = 60 + (len(token["text"]) * 2)
|
824 |
-
importance = min(95, importance)
|
825 |
-
|
826 |
-
# Generate more meaningful related terms using semantic similarity
|
827 |
-
if semantic_model is not None:
|
828 |
-
try:
|
829 |
-
# Generate some potential related terms
|
830 |
-
prefix_related = [f"about {token['text']}", f"what is {token['text']}", f"how to {token['text']}"]
|
831 |
-
synonym_candidates = ["similar", "equivalent", "comparable", "like", "related", "alternative"]
|
832 |
-
domain_terms = ["software", "marketing", "business", "science", "education", "technology"]
|
833 |
-
comparison_terms = prefix_related + synonym_candidates + domain_terms
|
834 |
-
|
835 |
-
# Get similarities
|
836 |
-
similarities = get_semantic_similarity(token['text'], comparison_terms)
|
837 |
-
|
838 |
-
# Use top 3 most similar terms
|
839 |
-
related_terms = [term for term, score in similarities[:3]]
|
840 |
-
except Exception as e:
|
841 |
-
print(f"Error generating semantic related terms: {str(e)}")
|
842 |
-
related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"]
|
843 |
-
else:
|
844 |
-
# Fallback if semantic model isn't loaded
|
845 |
-
related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"]
|
846 |
-
|
847 |
-
full_token_analysis.append({
|
848 |
-
"token": token["text"],
|
849 |
-
"type": token["type"],
|
850 |
-
"posTag": pos_tag,
|
851 |
-
"entityType": entity_type,
|
852 |
-
"importance": importance,
|
853 |
-
"historicalData": historical_data,
|
854 |
-
"origin": origin,
|
855 |
-
"relatedTerms": related_terms
|
856 |
-
})
|
857 |
-
|
858 |
-
progress(0.5, desc="Analyzing intent...")
|
859 |
-
# Intent analysis - handle potential errors
|
860 |
-
try:
|
861 |
-
intent_result = intent_classifier(
|
862 |
-
keyword,
|
863 |
-
candidate_labels=["informational", "navigational", "transactional"]
|
864 |
-
)
|
865 |
-
|
866 |
-
intent_analysis = {
|
867 |
-
"type": intent_result["labels"][0].capitalize(),
|
868 |
-
"strength": round(intent_result["scores"][0] * 100),
|
869 |
-
"mutations": [
|
870 |
-
f"{intent_result['labels'][0]}-variation-1",
|
871 |
-
f"{intent_result['labels'][0]}-variation-2"
|
872 |
-
]
|
873 |
-
}
|
874 |
-
except Exception as e:
|
875 |
-
print(f"Intent classification error: {str(e)}")
|
876 |
-
intent_analysis = {
|
877 |
-
"type": "Informational", # Default fallback
|
878 |
-
"strength": 70,
|
879 |
-
"mutations": ["fallback-variation-1", "fallback-variation-2"]
|
880 |
-
}
|
881 |
-
|
882 |
-
# Evolution potential (simplified calculation)
|
883 |
-
evolution_potential = min(95, 65 + (len(keyword) % 30))
|
884 |
-
|
885 |
-
# Predicted trends (simplified)
|
886 |
-
trends = [
|
887 |
-
"Voice search adaptation",
|
888 |
-
"Visual search integration"
|
889 |
-
]
|
890 |
-
|
891 |
-
# Generate more realistic and keyword-specific evolution data
|
892 |
-
base_volume = 1000 + (len(keyword) * 100)
|
893 |
-
|
894 |
-
# Adjust growth factor based on scenario
|
895 |
-
if growth_scenario == "Conservative":
|
896 |
-
growth_factor = 1.05 + (0.02 * (sum(ord(c) for c in keyword) % 5))
|
897 |
-
elif growth_scenario == "Aggressive":
|
898 |
-
growth_factor = 1.15 + (0.05 * (sum(ord(c) for c in keyword) % 5))
|
899 |
-
else: # Moderate
|
900 |
-
growth_factor = 1.1 + (0.03 * (sum(ord(c) for c in keyword) % 5))
|
901 |
-
|
902 |
-
evolution_data = []
|
903 |
-
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"][:int(forecast_months)]
|
904 |
-
current_volume = base_volume
|
905 |
-
|
906 |
-
for month in months:
|
907 |
-
# Add some randomness to make it look more realistic
|
908 |
-
np.random.seed(sum(ord(c) for c in month + keyword))
|
909 |
-
random_factor = 0.9 + (0.2 * np.random.random())
|
910 |
-
current_volume *= growth_factor * random_factor
|
911 |
-
|
912 |
-
evolution_data.append({
|
913 |
-
"month": month,
|
914 |
-
"searchVolume": int(current_volume),
|
915 |
-
"competitionScore": min(95, 45 + (months.index(month) * 3) + (sum(ord(c) for c in keyword) % 10)),
|
916 |
-
"intentClarity": min(95, 80 + (months.index(month) * 2) + (sum(ord(c) for c in keyword) % 5))
|
917 |
-
})
|
918 |
-
|
919 |
-
progress(0.6, desc="Creating visualizations...")
|
920 |
-
# Create interactive evolution chart
|
921 |
-
evolution_chart = create_evolution_chart(evolution_data, forecast_months, growth_scenario)
|
922 |
-
|
923 |
-
# SERP results and ranking history (new feature)
|
924 |
-
serp_results = None
|
925 |
-
ranking_chart = None
|
926 |
-
serp_html = None
|
927 |
-
|
928 |
-
if get_serp:
|
929 |
-
progress(0.7, desc="Fetching SERP data...")
|
930 |
-
# Get SERP results
|
931 |
-
serp_results = simulate_google_serp(keyword)
|
932 |
-
|
933 |
-
# Update ranking history
|
934 |
-
update_ranking_history(keyword, serp_results)
|
935 |
-
|
936 |
-
progress(0.8, desc="Creating ranking charts...")
|
937 |
-
# Create ranking history chart
|
938 |
-
if keyword in ranking_history and len(ranking_history[keyword]) > 0:
|
939 |
-
ranking_chart = create_ranking_history_chart(ranking_history[keyword])
|
940 |
-
|
941 |
-
# Generate SERP HTML
|
942 |
-
serp_html = generate_serp_html(keyword, serp_results)
|
943 |
-
|
944 |
-
# Generate HTML for token visualization
|
945 |
-
token_viz_html = generate_token_visualization_html(token_analysis, full_token_analysis)
|
946 |
-
|
947 |
-
# Generate HTML for full analysis
|
948 |
-
analysis_html = generate_full_analysis_html(
|
949 |
-
keyword,
|
950 |
-
full_token_analysis,
|
951 |
-
intent_analysis,
|
952 |
-
evolution_potential,
|
953 |
-
trends
|
954 |
-
)
|
955 |
-
|
956 |
-
# Generate JSON results
|
957 |
-
json_results = {
|
958 |
-
"keyword": keyword,
|
959 |
-
"tokenAnalysis": full_token_analysis,
|
960 |
-
"intentAnalysis": intent_analysis,
|
961 |
-
"evolutionPotential": evolution_potential,
|
962 |
-
"predictedTrends": trends,
|
963 |
-
"forecast": {
|
964 |
-
"months": forecast_months,
|
965 |
-
"scenario": growth_scenario,
|
966 |
-
"data": evolution_data
|
967 |
-
},
|
968 |
-
"serpResults": serp_results
|
969 |
-
}
|
970 |
-
|
971 |
-
progress(1.0, desc="Analysis complete!")
|
972 |
-
return token_viz_html, analysis_html, json_results, evolution_chart, serp_html, ranking_chart, keyword
|
973 |
|
974 |
-
|
975 |
-
|
976 |
-
|
977 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
978 |
|
979 |
-
#
|
980 |
-
|
981 |
-
|
982 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
983 |
|
984 |
with gr.Row():
|
985 |
with gr.Column(scale=1):
|
986 |
-
#
|
987 |
with gr.Group():
|
988 |
-
gr.Markdown("### Enter Keyword")
|
989 |
with gr.Row():
|
990 |
-
input_text = gr.Textbox(
|
|
|
|
|
|
|
|
|
991 |
|
992 |
with gr.Row():
|
993 |
-
audio_input = gr.Audio(
|
994 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
995 |
|
996 |
-
#
|
997 |
-
with gr.Accordion("Analysis Settings", open=False):
|
998 |
with gr.Row():
|
999 |
-
forecast_months = gr.Slider(
|
1000 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1001 |
|
1002 |
growth_scenario = gr.Radio(
|
1003 |
["Conservative", "Moderate", "Aggressive"],
|
1004 |
value="Moderate",
|
1005 |
-
label="Growth Scenario"
|
1006 |
)
|
1007 |
|
1008 |
-
#
|
1009 |
-
status_html = gr.HTML(
|
|
|
|
|
1010 |
|
1011 |
-
|
|
|
|
|
|
|
|
|
|
|
1012 |
|
1013 |
-
with
|
|
|
|
|
1014 |
example_btns = []
|
1015 |
-
|
1016 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1017 |
|
1018 |
with gr.Column(scale=2):
|
1019 |
with gr.Tabs():
|
1020 |
-
with gr.Tab("Token Visualization"):
|
1021 |
token_viz_html = gr.HTML()
|
1022 |
|
1023 |
-
with gr.Tab("Full Analysis"):
|
1024 |
analysis_html = gr.HTML()
|
1025 |
|
1026 |
-
with gr.Tab("Evolution Chart"):
|
1027 |
evolution_chart = gr.Plot(label="Keyword Evolution Forecast")
|
1028 |
|
1029 |
-
with gr.Tab("SERP Results"):
|
1030 |
serp_html = gr.HTML()
|
1031 |
|
1032 |
-
with gr.Tab("Ranking History"):
|
1033 |
ranking_chart = gr.Plot(label="Keyword Ranking History")
|
1034 |
|
1035 |
-
with gr.Tab("Raw Data"):
|
1036 |
json_output = gr.JSON()
|
1037 |
|
1038 |
-
#
|
1039 |
voice_submit_btn.click(
|
1040 |
handle_voice_input,
|
1041 |
inputs=[audio_input],
|
1042 |
outputs=[input_text]
|
1043 |
)
|
1044 |
|
1045 |
-
#
|
1046 |
analyze_btn.click(
|
1047 |
-
lambda: '<div
|
1048 |
outputs=status_html
|
1049 |
).then(
|
1050 |
analyze_keyword,
|
1051 |
inputs=[input_text, forecast_months, growth_scenario, include_serp],
|
1052 |
outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text]
|
1053 |
).then(
|
1054 |
-
lambda: '<div
|
1055 |
outputs=status_html
|
1056 |
)
|
1057 |
|
1058 |
-
# Example buttons
|
1059 |
for btn in example_btns:
|
1060 |
-
# Define the function that will be called when an example button is clicked
|
1061 |
def set_example(btn_label):
|
1062 |
-
|
|
|
1063 |
|
1064 |
btn.click(
|
1065 |
set_example,
|
1066 |
inputs=[btn],
|
1067 |
outputs=[input_text]
|
1068 |
).then(
|
1069 |
-
lambda: '<div
|
1070 |
outputs=status_html
|
1071 |
).then(
|
1072 |
analyze_keyword,
|
1073 |
inputs=[input_text, forecast_months, growth_scenario, include_serp],
|
1074 |
outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text]
|
1075 |
).then(
|
1076 |
-
lambda: '<div
|
1077 |
outputs=status_html
|
1078 |
)
|
1079 |
|
1080 |
-
# Launch
|
1081 |
if __name__ == "__main__":
|
1082 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
1 |
+
# Your existing imports remain the same
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
|
|
12 |
import plotly.graph_objects as go
|
13 |
from plotly.subplots import make_subplots
|
14 |
|
15 |
+
# AI Snipper Custom CSS
|
16 |
+
ai_snipper_css = """
|
17 |
+
/* AI Snipper Color Variables */
|
18 |
+
:root {
|
19 |
+
--ai-cyan: #06b6d4;
|
20 |
+
--ai-blue: #3b82f6;
|
21 |
+
--ai-purple: #8b5cf6;
|
22 |
+
--ai-teal: #14b8a6;
|
23 |
+
--ai-indigo: #6366f1;
|
24 |
+
|
25 |
+
--bg-primary: #0a0e16;
|
26 |
+
--bg-secondary: #1a2332;
|
27 |
+
--bg-tertiary: #2a3441;
|
28 |
+
--bg-card: #1e293b;
|
29 |
+
--bg-card-hover: #334155;
|
30 |
+
|
31 |
+
--text-primary: #ffffff;
|
32 |
+
--text-secondary: #e2e8f0;
|
33 |
+
--text-muted: #94a3b8;
|
34 |
+
--text-accent: #06b6d4;
|
35 |
+
|
36 |
+
--border-primary: #475569;
|
37 |
+
--border-accent: #06b6d4;
|
38 |
+
|
39 |
+
--gradient-primary: linear-gradient(135deg, #06b6d4, #3b82f6, #8b5cf6);
|
40 |
+
--gradient-secondary: linear-gradient(135deg, #0a0e16 0%, #1a2332 50%, #2a3441 100%);
|
41 |
+
--gradient-button: linear-gradient(135deg, #06b6d4, #3b82f6);
|
42 |
+
--gradient-card: linear-gradient(135deg, #1e293b 0%, #334155 100%);
|
43 |
+
}
|
44 |
|
45 |
+
/* Main container styling */
|
46 |
+
.gradio-container {
|
47 |
+
background: var(--gradient-secondary) !important;
|
48 |
+
color: var(--text-primary) !important;
|
49 |
+
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif !important;
|
50 |
+
min-height: 100vh !important;
|
51 |
+
}
|
52 |
|
53 |
+
/* Header styling */
|
54 |
+
.gradio-container h1 {
|
55 |
+
background: var(--gradient-primary) !important;
|
56 |
+
-webkit-background-clip: text !important;
|
57 |
+
-webkit-text-fill-color: transparent !important;
|
58 |
+
background-clip: text !important;
|
59 |
+
text-align: center !important;
|
60 |
+
font-size: 3rem !important;
|
61 |
+
font-weight: 800 !important;
|
62 |
+
margin-bottom: 1rem !important;
|
63 |
+
text-shadow: 0 0 20px rgba(6, 182, 212, 0.3) !important;
|
64 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
.gradio-container h2, .gradio-container h3 {
|
67 |
+
color: var(--text-primary) !important;
|
68 |
+
font-weight: 600 !important;
|
69 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
/* Card/Panel styling */
|
72 |
+
.gr-box, .gr-form, .gr-panel {
|
73 |
+
background: var(--gradient-card) !important;
|
74 |
+
border: 1px solid var(--border-primary) !important;
|
75 |
+
border-radius: 16px !important;
|
76 |
+
box-shadow: 0 10px 15px -3px rgb(0 0 0 / 0.1) !important;
|
77 |
+
backdrop-filter: blur(10px) !important;
|
78 |
+
}
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
/* Group styling */
|
81 |
+
.gr-group {
|
82 |
+
background: var(--gradient-card) !important;
|
83 |
+
border: 1px solid var(--border-primary) !important;
|
84 |
+
border-radius: 12px !important;
|
85 |
+
padding: 1.5rem !important;
|
86 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
/* Text inputs */
|
89 |
+
.gr-textbox textarea, .gr-textbox input {
|
90 |
+
background: var(--bg-secondary) !important;
|
91 |
+
border: 1px solid var(--border-primary) !important;
|
92 |
+
border-radius: 12px !important;
|
93 |
+
color: var(--text-primary) !important;
|
94 |
+
padding: 1rem !important;
|
95 |
+
font-family: inherit !important;
|
96 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
.gr-textbox textarea:focus, .gr-textbox input:focus {
|
99 |
+
border-color: var(--border-accent) !important;
|
100 |
+
box-shadow: 0 0 0 3px rgba(6, 182, 212, 0.1) !important;
|
101 |
+
outline: none !important;
|
102 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
.gr-textbox textarea::placeholder, .gr-textbox input::placeholder {
|
105 |
+
color: var(--text-muted) !important;
|
106 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
/* Labels */
|
109 |
+
.gr-textbox label, .gr-slider label, .gr-radio label, .gr-checkbox label {
|
110 |
+
color: var(--text-secondary) !important;
|
111 |
+
font-weight: 500 !important;
|
112 |
+
margin-bottom: 0.5rem !important;
|
113 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
/* Buttons */
|
116 |
+
.gr-button {
|
117 |
+
background: var(--gradient-button) !important;
|
118 |
+
border: none !important;
|
119 |
+
border-radius: 12px !important;
|
120 |
+
color: var(--text-primary) !important;
|
121 |
+
font-weight: 600 !important;
|
122 |
+
padding: 1rem 2rem !important;
|
123 |
+
transition: all 0.3s ease !important;
|
124 |
+
box-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1) !important;
|
125 |
+
font-family: inherit !important;
|
126 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
.gr-button:hover {
|
129 |
+
transform: translateY(-2px) !important;
|
130 |
+
box-shadow: 0 10px 20px rgba(6, 182, 212, 0.3) !important;
|
131 |
+
filter: brightness(1.1) !important;
|
132 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
.gr-button.secondary {
|
135 |
+
background: var(--bg-card) !important;
|
136 |
+
color: var(--text-secondary) !important;
|
137 |
+
border: 1px solid var(--border-primary) !important;
|
138 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
+
.gr-button.secondary:hover {
|
141 |
+
background: var(--bg-card-hover) !important;
|
142 |
+
border-color: var(--border-accent) !important;
|
143 |
+
color: var(--text-primary) !important;
|
144 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
+
/* File upload areas */
|
147 |
+
.gr-file-upload {
|
148 |
+
background: var(--bg-card) !important;
|
149 |
+
border: 2px dashed var(--border-accent) !important;
|
150 |
+
border-radius: 16px !important;
|
151 |
+
color: var(--text-secondary) !important;
|
152 |
+
transition: all 0.3s ease !important;
|
153 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
.gr-file-upload:hover {
|
156 |
+
border-color: var(--ai-cyan) !important;
|
157 |
+
background: var(--bg-card-hover) !important;
|
158 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
/* Audio input */
|
161 |
+
.gr-audio {
|
162 |
+
background: var(--gradient-card) !important;
|
163 |
+
border: 1px solid var(--border-primary) !important;
|
164 |
+
border-radius: 12px !important;
|
165 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
+
/* Sliders */
|
168 |
+
.gr-slider input[type="range"] {
|
169 |
+
background: var(--bg-secondary) !important;
|
170 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
+
.gr-slider input[type="range"]::-webkit-slider-track {
|
173 |
+
background: var(--bg-secondary) !important;
|
174 |
+
border-radius: 6px !important;
|
175 |
+
}
|
176 |
+
|
177 |
+
.gr-slider input[type="range"]::-webkit-slider-thumb {
|
178 |
+
background: var(--gradient-button) !important;
|
179 |
+
border: none !important;
|
180 |
+
border-radius: 50% !important;
|
181 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2) !important;
|
182 |
+
}
|
183 |
+
|
184 |
+
/* Radio buttons and checkboxes */
|
185 |
+
.gr-radio input[type="radio"] {
|
186 |
+
accent-color: var(--ai-cyan) !important;
|
187 |
+
}
|
188 |
+
|
189 |
+
.gr-checkbox input[type="checkbox"] {
|
190 |
+
accent-color: var(--ai-cyan) !important;
|
191 |
+
}
|
192 |
+
|
193 |
+
/* Tabs */
|
194 |
+
.gr-tab-nav {
|
195 |
+
background: var(--gradient-card) !important;
|
196 |
+
border-radius: 12px !important;
|
197 |
+
padding: 0.5rem !important;
|
198 |
+
}
|
199 |
+
|
200 |
+
.gr-tab-nav button {
|
201 |
+
background: transparent !important;
|
202 |
+
color: var(--text-secondary) !important;
|
203 |
+
border: none !important;
|
204 |
+
border-radius: 8px !important;
|
205 |
+
margin: 0 4px !important;
|
206 |
+
padding: 0.75rem 1.5rem !important;
|
207 |
+
transition: all 0.3s ease !important;
|
208 |
+
font-weight: 500 !important;
|
209 |
+
}
|
210 |
+
|
211 |
+
.gr-tab-nav button.selected {
|
212 |
+
background: var(--gradient-button) !important;
|
213 |
+
color: var(--text-primary) !important;
|
214 |
+
box-shadow: 0 2px 4px rgba(6, 182, 212, 0.3) !important;
|
215 |
+
}
|
216 |
+
|
217 |
+
.gr-tab-nav button:hover:not(.selected) {
|
218 |
+
background: var(--bg-card-hover) !important;
|
219 |
+
color: var(--text-primary) !important;
|
220 |
+
}
|
221 |
+
|
222 |
+
/* Tab content */
|
223 |
+
.gr-tabitem {
|
224 |
+
background: var(--gradient-card) !important;
|
225 |
+
border: 1px solid var(--border-primary) !important;
|
226 |
+
border-radius: 12px !important;
|
227 |
+
padding: 1.5rem !important;
|
228 |
+
margin-top: 1rem !important;
|
229 |
+
}
|
230 |
+
|
231 |
+
/* Progress bars */
|
232 |
+
.gr-progress {
|
233 |
+
background: var(--bg-secondary) !important;
|
234 |
+
border-radius: 6px !important;
|
235 |
+
}
|
236 |
+
|
237 |
+
.gr-progress-bar {
|
238 |
+
background: var(--gradient-button) !important;
|
239 |
+
border-radius: 6px !important;
|
240 |
+
}
|
241 |
+
|
242 |
+
/* Accordion */
|
243 |
+
.gr-accordion {
|
244 |
+
background: var(--gradient-card) !important;
|
245 |
+
border: 1px solid var(--border-primary) !important;
|
246 |
+
border-radius: 12px !important;
|
247 |
+
}
|
248 |
+
|
249 |
+
.gr-accordion summary {
|
250 |
+
background: var(--bg-card) !important;
|
251 |
+
color: var(--text-primary) !important;
|
252 |
+
padding: 1rem !important;
|
253 |
+
border-radius: 12px !important;
|
254 |
+
cursor: pointer !important;
|
255 |
+
font-weight: 600 !important;
|
256 |
+
}
|
257 |
+
|
258 |
+
.gr-accordion[open] summary {
|
259 |
+
border-bottom: 1px solid var(--border-primary) !important;
|
260 |
+
border-radius: 12px 12px 0 0 !important;
|
261 |
+
}
|
262 |
+
|
263 |
+
/* JSON output */
|
264 |
+
.gr-json {
|
265 |
+
background: var(--bg-secondary) !important;
|
266 |
+
border: 1px solid var(--border-primary) !important;
|
267 |
+
border-radius: 12px !important;
|
268 |
+
color: var(--text-primary) !important;
|
269 |
+
}
|
270 |
+
|
271 |
+
/* HTML output areas */
|
272 |
+
.gr-html {
|
273 |
+
background: var(--gradient-card) !important;
|
274 |
+
border: 1px solid var(--border-primary) !important;
|
275 |
+
border-radius: 12px !important;
|
276 |
+
padding: 1rem !important;
|
277 |
+
}
|
278 |
+
|
279 |
+
/* Plot containers */
|
280 |
+
.gr-plot {
|
281 |
+
background: var(--gradient-card) !important;
|
282 |
+
border: 1px solid var(--border-primary) !important;
|
283 |
+
border-radius: 12px !important;
|
284 |
+
padding: 1rem !important;
|
285 |
+
}
|
286 |
+
|
287 |
+
/* Rows and columns */
|
288 |
+
.gr-row {
|
289 |
+
gap: 1.5rem !important;
|
290 |
+
}
|
291 |
+
|
292 |
+
.gr-column {
|
293 |
+
gap: 1rem !important;
|
294 |
+
}
|
295 |
+
|
296 |
+
/* Scrollbars */
|
297 |
+
::-webkit-scrollbar {
|
298 |
+
width: 8px;
|
299 |
+
height: 8px;
|
300 |
+
}
|
301 |
+
|
302 |
+
::-webkit-scrollbar-track {
|
303 |
+
background: var(--bg-secondary);
|
304 |
+
border-radius: 4px;
|
305 |
+
}
|
306 |
+
|
307 |
+
::-webkit-scrollbar-thumb {
|
308 |
+
background: var(--gradient-button);
|
309 |
+
border-radius: 4px;
|
310 |
+
}
|
311 |
+
|
312 |
+
::-webkit-scrollbar-thumb:hover {
|
313 |
+
background: var(--ai-cyan);
|
314 |
+
}
|
315 |
+
|
316 |
+
/* Custom DNA-themed elements */
|
317 |
+
.dna-header {
|
318 |
+
position: relative;
|
319 |
+
text-align: center;
|
320 |
+
padding: 2rem 0;
|
321 |
+
margin-bottom: 2rem;
|
322 |
+
}
|
323 |
+
|
324 |
+
.dna-header::before {
|
325 |
+
content: '';
|
326 |
+
position: absolute;
|
327 |
+
top: 0;
|
328 |
+
left: 50%;
|
329 |
+
transform: translateX(-50%);
|
330 |
+
width: 100px;
|
331 |
+
height: 4px;
|
332 |
+
background: var(--gradient-primary);
|
333 |
+
border-radius: 2px;
|
334 |
+
}
|
335 |
+
|
336 |
+
.dna-subtitle {
|
337 |
+
color: var(--text-muted) !important;
|
338 |
+
font-size: 1.2rem !important;
|
339 |
+
margin-top: 1rem !important;
|
340 |
+
font-weight: 400 !important;
|
341 |
+
}
|
342 |
+
|
343 |
+
/* Example button styling */
|
344 |
+
.example-buttons .gr-button {
|
345 |
+
background: var(--bg-card) !important;
|
346 |
+
color: var(--text-accent) !important;
|
347 |
+
border: 1px solid var(--border-accent) !important;
|
348 |
+
font-size: 0.875rem !important;
|
349 |
+
padding: 0.5rem 1rem !important;
|
350 |
+
}
|
351 |
+
|
352 |
+
.example-buttons .gr-button:hover {
|
353 |
+
background: var(--gradient-button) !important;
|
354 |
+
color: var(--text-primary) !important;
|
355 |
+
border-color: transparent !important;
|
356 |
+
}
|
357 |
+
|
358 |
+
/* Status messages */
|
359 |
+
.status-message {
|
360 |
+
text-align: center !important;
|
361 |
+
padding: 1rem !important;
|
362 |
+
border-radius: 8px !important;
|
363 |
+
margin: 1rem 0 !important;
|
364 |
+
font-weight: 500 !important;
|
365 |
+
}
|
366 |
+
|
367 |
+
.status-loading {
|
368 |
+
background: rgba(6, 182, 212, 0.1) !important;
|
369 |
+
border: 1px solid var(--border-accent) !important;
|
370 |
+
color: var(--text-accent) !important;
|
371 |
+
}
|
372 |
+
|
373 |
+
.status-success {
|
374 |
+
background: rgba(20, 184, 166, 0.1) !important;
|
375 |
+
border: 1px solid var(--ai-teal) !important;
|
376 |
+
color: var(--ai-teal) !important;
|
377 |
+
}
|
378 |
+
|
379 |
+
.status-error {
|
380 |
+
background: rgba(239, 68, 68, 0.1) !important;
|
381 |
+
border: 1px solid #ef4444 !important;
|
382 |
+
color: #ef4444 !important;
|
383 |
+
}
|
384 |
+
|
385 |
+
/* Footer hiding */
|
386 |
+
footer {
|
387 |
+
visibility: hidden !important;
|
388 |
+
}
|
389 |
+
|
390 |
+
/* Mobile responsiveness */
|
391 |
+
@media (max-width: 768px) {
|
392 |
+
.gradio-container h1 {
|
393 |
+
font-size: 2rem !important;
|
394 |
+
}
|
395 |
|
396 |
+
.gr-button {
|
397 |
+
width: 100% !important;
|
398 |
+
justify-content: center !important;
|
399 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
|
401 |
+
.gr-row {
|
402 |
+
flex-direction: column !important;
|
403 |
+
}
|
404 |
+
}
|
405 |
+
"""
|
406 |
+
|
407 |
+
# Keep all your existing function code exactly the same
|
408 |
+
# [Your existing global variables and all functions remain unchanged]
|
409 |
+
|
410 |
+
# Global variables to store models
|
411 |
+
tokenizer = None
|
412 |
+
ner_pipeline = None
|
413 |
+
pos_pipeline = None
|
414 |
+
intent_classifier = None
|
415 |
+
semantic_model = None
|
416 |
+
stt_model = None # Speech-to-text model
|
417 |
+
models_loaded = False
|
418 |
|
419 |
+
# Database to store keyword ranking history (in-memory database for this example)
|
420 |
+
ranking_history = {}
|
421 |
+
|
422 |
+
# [Keep all your existing functions - load_models, speech_to_text, etc.]
|
423 |
+
# I'm not repeating them here to save space, but they should remain exactly the same
|
424 |
+
|
425 |
+
# Updated Gradio interface with AI Snipper styling
|
426 |
+
with gr.Blocks(
|
427 |
+
css=ai_snipper_css,
|
428 |
+
title="𧬠AI Snipper Keyword DNA Analyzer",
|
429 |
+
theme=gr.themes.Base(
|
430 |
+
primary_hue="cyan",
|
431 |
+
secondary_hue="blue",
|
432 |
+
neutral_hue="slate",
|
433 |
+
font=[gr.themes.GoogleFont("Inter"), "sans-serif"]
|
434 |
+
)
|
435 |
+
) as demo:
|
436 |
+
|
437 |
+
# Custom header with DNA theme
|
438 |
+
gr.HTML("""
|
439 |
+
<div class="dna-header">
|
440 |
+
<h1>𧬠Keyword DNA Analyzer</h1>
|
441 |
+
<p class="dna-subtitle">
|
442 |
+
Decode the genetic structure of your keywords with AI-powered analysis
|
443 |
+
</p>
|
444 |
+
</div>
|
445 |
+
""")
|
446 |
|
447 |
with gr.Row():
|
448 |
with gr.Column(scale=1):
|
449 |
+
# Voice search capabilities with improved styling
|
450 |
with gr.Group():
|
451 |
+
gr.Markdown("### π― Enter Keyword")
|
452 |
with gr.Row():
|
453 |
+
input_text = gr.Textbox(
|
454 |
+
label="Keyword to analyze",
|
455 |
+
placeholder="e.g. artificial intelligence, machine learning, SEO strategy...",
|
456 |
+
lines=2
|
457 |
+
)
|
458 |
|
459 |
with gr.Row():
|
460 |
+
audio_input = gr.Audio(
|
461 |
+
type="filepath",
|
462 |
+
label="π€ Or use voice search"
|
463 |
+
)
|
464 |
+
voice_submit_btn = gr.Button(
|
465 |
+
"π Convert Voice to Text",
|
466 |
+
variant="secondary"
|
467 |
+
)
|
468 |
|
469 |
+
# SERP settings with better organization
|
470 |
+
with gr.Accordion("βοΈ Analysis Settings", open=False):
|
471 |
with gr.Row():
|
472 |
+
forecast_months = gr.Slider(
|
473 |
+
minimum=3,
|
474 |
+
maximum=12,
|
475 |
+
value=6,
|
476 |
+
step=1,
|
477 |
+
label="π Forecast Months"
|
478 |
+
)
|
479 |
+
include_serp = gr.Checkbox(
|
480 |
+
label="π Include SERP Analysis",
|
481 |
+
value=True
|
482 |
+
)
|
483 |
|
484 |
growth_scenario = gr.Radio(
|
485 |
["Conservative", "Moderate", "Aggressive"],
|
486 |
value="Moderate",
|
487 |
+
label="π Growth Scenario"
|
488 |
)
|
489 |
|
490 |
+
# Status indicator with custom styling
|
491 |
+
status_html = gr.HTML(
|
492 |
+
'<div class="status-message">π Enter a keyword and click "Analyze DNA" to begin</div>'
|
493 |
+
)
|
494 |
|
495 |
+
# Main analyze button
|
496 |
+
analyze_btn = gr.Button(
|
497 |
+
"𧬠Analyze DNA",
|
498 |
+
variant="primary",
|
499 |
+
size="lg"
|
500 |
+
)
|
501 |
|
502 |
+
# Example buttons with custom styling
|
503 |
+
gr.Markdown("### π‘ Try These Examples")
|
504 |
+
with gr.Row(elem_classes="example-buttons"):
|
505 |
example_btns = []
|
506 |
+
examples = [
|
507 |
+
"preprocessing",
|
508 |
+
"breakdown",
|
509 |
+
"artificial intelligence",
|
510 |
+
"transformer model",
|
511 |
+
"machine learning"
|
512 |
+
]
|
513 |
+
for example in examples:
|
514 |
+
example_btns.append(gr.Button(f"β¨ {example}"))
|
515 |
|
516 |
with gr.Column(scale=2):
|
517 |
with gr.Tabs():
|
518 |
+
with gr.Tab("π¬ Token Visualization"):
|
519 |
token_viz_html = gr.HTML()
|
520 |
|
521 |
+
with gr.Tab("π Full Analysis"):
|
522 |
analysis_html = gr.HTML()
|
523 |
|
524 |
+
with gr.Tab("π Evolution Chart"):
|
525 |
evolution_chart = gr.Plot(label="Keyword Evolution Forecast")
|
526 |
|
527 |
+
with gr.Tab("π SERP Results"):
|
528 |
serp_html = gr.HTML()
|
529 |
|
530 |
+
with gr.Tab("π Ranking History"):
|
531 |
ranking_chart = gr.Plot(label="Keyword Ranking History")
|
532 |
|
533 |
+
with gr.Tab("πΎ Raw Data"):
|
534 |
json_output = gr.JSON()
|
535 |
|
536 |
+
# Event handlers remain the same but with updated status messages
|
537 |
voice_submit_btn.click(
|
538 |
handle_voice_input,
|
539 |
inputs=[audio_input],
|
540 |
outputs=[input_text]
|
541 |
)
|
542 |
|
543 |
+
# Updated status messages with custom styling
|
544 |
analyze_btn.click(
|
545 |
+
lambda: '<div class="status-message status-loading">π Loading models and analyzing... This may take a moment.</div>',
|
546 |
outputs=status_html
|
547 |
).then(
|
548 |
analyze_keyword,
|
549 |
inputs=[input_text, forecast_months, growth_scenario, include_serp],
|
550 |
outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text]
|
551 |
).then(
|
552 |
+
lambda: '<div class="status-message status-success">β
Analysis complete! Check the results above.</div>',
|
553 |
outputs=status_html
|
554 |
)
|
555 |
|
556 |
+
# Example buttons with enhanced interaction
|
557 |
for btn in example_btns:
|
|
|
558 |
def set_example(btn_label):
|
559 |
+
# Remove the emoji prefix for the actual keyword
|
560 |
+
return btn_label.replace("β¨ ", "")
|
561 |
|
562 |
btn.click(
|
563 |
set_example,
|
564 |
inputs=[btn],
|
565 |
outputs=[input_text]
|
566 |
).then(
|
567 |
+
lambda: '<div class="status-message status-loading">π Loading models and analyzing... This may take a moment.</div>',
|
568 |
outputs=status_html
|
569 |
).then(
|
570 |
analyze_keyword,
|
571 |
inputs=[input_text, forecast_months, growth_scenario, include_serp],
|
572 |
outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text]
|
573 |
).then(
|
574 |
+
lambda: '<div class="status-message status-success">β
Analysis complete! Check the results above.</div>',
|
575 |
outputs=status_html
|
576 |
)
|
577 |
|
578 |
+
# Launch configuration
|
579 |
if __name__ == "__main__":
|
580 |
+
demo.launch(
|
581 |
+
share=True,
|
582 |
+
show_error=True,
|
583 |
+
debug=True
|
584 |
+
)
|